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"STRACT

Four techniques for the numerical solution of partial

differential equations and eigenvalue problems were

investigated. Typical problems considered were elliptic

partial differential equations of the form

U xx + U yy = f(x'y)' (1)

or

U xx + U yy + X2U = 0 (2)

where appropriate boundary conditions are specified so

that the problem is self-adjoint,

The four methods are relaxation, Galerkin, Rayleigh-

Ritz, and dynamic programming combined with Stodola's

method, for eigenvalue problems.

The results indicated that for eigenvalue problems

relaxation or dynamic programming modified is to be

preferred usually and for partial differential equations

Galerkin or dynamic programming is preferred.
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I. INTRODUCTION

Initially for this thesis it was planned. to investigate

methods for finding eigenfunctions and eigenvalues, with

a particular interest in the oscillation in basins such as

harbors and bays. The report by Angel [i0 introduced

a new mothod, that of dynamic programming,' for the solu-

tion of some partial differential equations. This method

seemed promising and it was then extended here to'the solu-

tion of other partial differential equations. It also

made it possible to invert a linear differential operator

and hence apply Stodola's method in finding eigenvalues

and eigenfunctions. This led naturally to a'comparison

with several procedures already known to try to compare

convergence, speed, and accuracy, by applying them to the

solution of several rather simple problems.

It is assumed that the reader has.some familiaiity with

the techniques of replacing differential equations by dif-

ference equations and the standard technique of separating

variables in linear partial differential equations' The

regions and their boundaries were assumed to be "nice,"

not excessively irregular. Some knowledge of calculus

of variations also is desirable but riot n6cessary; re'f-

erence J5) provides more than adequate background.

Four problems were divided into two categories. In the

first category were eigenvalue problems. Two typical ones

were

6



U xx +Uy -x 2U in A. (11)

subject to the constraint

U(xy) - 0 on SA, (1.2)

where 6A is the boundary of the domain A; and second

O U xlU- in A, (1.3)

subject to the constraint

U(xay) - 0 on 6A. (1.4)
a2

in the second'catekory were equations such as Poisson's

equation

U + Uyy f(x,y) in A, (1.5)

subject to the constraint

U(X,y) = g(x*y) on 6A, (1.6)

V.d the biharmonic equation

V'U = f(x,y) in A, (1.7)

subject to the constraints

U(xy) = h(x,y) on 6A (1.8)

and

a 2UU q(x,y) on 6A. (a9)

Problems in the first category were numerically solved
by a relaxation method, the Rayleigh-Ritz method, and
dynamic programming combined with Stodola's method.

7'



Problems in the second category were solved by Galerkin's

Smethod, the Rayleigh-Ritz method and dynamic programming.

SThe domair used throughout this paper for comparisons

wa. the unit square, with the constraint

U(xy) = 0 on 6A. (1.10)

!Computations were also carried out for L-shaped and trian-

gular regions and for other boundary conditions.

P In the relaxation method and dynamic programming method

in solving eigenvalue problems the initial estimates to

the eigenfunctions had a special property. The first ap-

proximation to U1 was picked so that it had no negative

value in the domain. The approximation to Uz was picked

p so that it had negative and positive values in the domain

and in addition it was orthogonal to U1. The initial ap-

proximations to U3 was picked in the same way as the one

for U2 except that it had to be orthogonal to both U1 and

U2. It may be difficult to make a suitable choice for some

of the higher modes.

8



I1. RELAXATION METHOD

For many years relaxation techniques have been used

to solve differential equations with and without the

aid of computers. They are basically iterative proce-

dures in which a new approximation is obtained from a

previous approximation and its residuals.

A. DERIVATION OF EQUATIONS

In this section a typical problem is posed and solved

by a relaxation method.

Suppose the problem to be solved has the following

form

Ztt = ZXX + Zyy in A. (2.1)

where the unknown function Z must satisfy the differential

equation in a simply connected region A in the xy plane,

and for t>O. In addition the function Z is required to

vanish at points on the boundary 6A of the region A,

Z(x,yt) = 0 on 6A. (2.2)

A typical problem is that of a vibrating membrane. The

function Z(x,y,t) denotes the vertical displacement of

the membrane.

Now assume that the displacement has a representation

of the form

Z(x,y,t) = T(t) U(x,y). (2.3)

9



When Eq. (2.3) is combined with Eq. (2.1) the variables

may be separated ancA a new equation is obtained of the

form

ST" (Ux + Uyy
U - X -A2  (2.4)

This is equivalent to two equations

T" + X2T 0 (2.5)

and

U + U -X 2 U, (2.6)xx yy

each with a parameter X. Further U must satisfy the

boundary condition

SU(x,y) = 0 on 6A. (2.7)

This is a typical eigenvalue and eigenfunction problem:

to find the values X, or XA, and the associated functions

U, or Un, satisfying Eq. (2.6) and the constraint (2.7).

The values An, X • A2 S A3 • *', are called the

eigenvalues. With each eigenvalue is an eigenfunction

Un. In this problem the eigenfunctions associated with
n

different eigenvalues are orthogonal on the region A.

Each cigenfunction Un is also called a mode.

Consider a thin elastic membrane of a particular form,

such as a very thin uniform sheet of rubber. Assume that

the membrane is made fast at the boundary, while it is

tightly stretched over the region with uniform tension.

Also assume that damping is negligible. Then if an interior

region of the membrane is pushed in a direction perpendicular

10



to the plane of equilibrium, it becomes distorted into a

curved surface. The resulting area can be computed as

s - ffv-l+ U 'cza+ U 2 dxdy, (2.8)

A

Assume that U and Uy are very small; Eq. (2.8) becomes

approximately

S a ff(i + 1U 2 + Uy 2) dxdy. (2.9)

A

The increase in the area of the membrane due to the distor-

tion is therefore approximated by

aS * ff(l + hU 2 + hU 2) dxdy - ff dxdy (2.10)
Ax yAA A

h ff(Ux 2 + Uy2) dxdy.
A

Hence the potential energy of the membrane in the deflec-

ted position is

PE = v/2 ff(Ux 2 + U y2) dxdy, (2.11)

A

where v is the tension, assumed to be constant over the

region.

Now consider any particular eigenfunction or mode.

It follows from the solution of Eq. (2.4) that the deflec-

tion is a periodic function of time and may be expressed

in the form

Z(x,y,t) = U(x,y) sin At, (2.12)

except for a phase shift. Thus Eq. (2.11) can be rewritten

11



as

PE ½J (Ux2 + UY2 ) dxdy sin2 At. (2.13)

A

The maximum value of the potential energy is

PEmax - v/2 Mf(U.' + Uy 2) dxdy. (2.14)

A

The kinetic energy of an element dm = pdxdy of the membrane

is

hpdxdy(Ut)z - hpdxdy(U 2 x 2 cos2Xt), (2.15)

where p denotes the mass per unit area of the membrane.

Therefore, the kinetic energy of the vibrating system is

KE - hA2 p ffU2dxdy cos 2At, (2.16)
A

and the maximum value of the kinetic energy is

KEmax - ½x2p ffU2dxdy. (2.17)
A

If it is assumed that the energy is constant then, the

maximum values of the potential and kinetic energy are

equal for individual modes, and therefore

½X2p ffU2dxdy = v/2 ff(U 2 + U 2 dxdy (2.18)
A A

or,

v ff(Ux 2 + Uy 2) dxdy (2.19)

x2 A

p ffU2 dxdy
A

12



The first eigenfunction Ui is the function which minimizes

this quotient and the first eigenvalue X1 a is the corres-

ponding value for the quotient. The next eigenfunction

is the function Ua which minimizes the quotient in the

space of functions orthogonal to Ui, and A22 is the corres-

ponding value of the quotient. The third eigenfunction

Us minimizes the quotient in the space of functions ortho-

gonal to Ui and U2, etc. The set U1 , U2, ... is unique

except that if two or more eigenfunctions have the same

eigenvalue, they may be replaced by linear combinations

of themselves. It is seen that Xi A2 AX2.

If the mode U is known, Eq. (2.19) can be used to obtain

A2 . An interesting fact is that a rather poor approximation

to the first mode Ui, chosen to satisfy the appropriate

boundary condition, will yield a surprisingly good estimate

for Xi2. This result is apparently due to Lord Rayleigh,

and the quotient is sometimes called Rayleigh's quotient.

B. COMPUTATIONAL ROUTINE

In this section the results of section A will be used

to develope a method to solve Eq. (2.6).

If Eq. (2.6) is expressed as a difference equation

then it may be written as

(Ui+lj + Ui-l.j- 2Uisj) (UiJ+l + Ui j_1 - 2Ui,j)
+

h 2 k 2

=-XU , (2.20)

13



where h and k denote the x and y mesh size respectively. If

the mesh sizes are equal then Eq. (2.20) can be rewritten as

(Ui+l, 3 + Uij+1 + Ui. 1  + U _ (2.21)

4 - Vh 2

The procedure used to solve the partial differential

equation was to pick a function U° which satisfied the given

boundary conditions as a first approximation to U(x,y).

This function need not be a very good approximation to U,

and in fact step functions were sometimes used.

From Eq. (2.19) an approximation to X2 was obtained

by assuming that the approximation Uo was the desired func-

tion U. With this first approximation to A Eq.(2.21)

was used to obtain an improved estimate of U. The form

of Eq. (2.21) used to obtain the vth approximation was

v-I V-I V V

V (Ui+ 1lj + UiJ+l + Ui-lj + Ui,j-l) (2.22)

( 2 )
Ui'j (4 - X2h)

in which the v-lst estimate of X was used. By alternating

Eq. (2.19) and Eq. (2.22) a close approximation to )2 and
U were obtained. The solution converged to the smallest

eigenvalue X, and the associated eigenvector U1 .

C. HIGHER ORDER EIGENVALUES

In this section the method is extended to find the

larger eigenvalues and eigenfunctions.

To obtain the larger eigenvalues and eigenvectors the

same procedure as that in section B was used except that

14



additional equations were added to force the eigenfunctions

to be orthogonal to those already found. Define U1 for

i - 1, 2,..., n to be the ith eigenfunction, associated

with Xi. All higher eigenfunctions must be orthogonal to

the lower ones obtained. Orthogonalization was accomplished

by subtracting out multiples of the lower eigenfunctions

already obtained. This was effected by expressing U as

-n

U i+I Ul+l C UP (2.23)
new old i

where

jui+lo U dxdy

dxd Jal,2,... ,i. (2.24)
ff dxdy

For each eigenfunction desired a different initial

approximating function was used. The method gave the eigen-

values and associated eigenfunctions in numerically increas-

ing order. The method was very simple and effective for

lower eigenvalues.

The fault of the method is that convergence was poor

and computation times were large if the number of intervals

in both directions was large.

------.- 15



III. DYNAMIC PROGRAMMING t8,101

The method of dynamic programming has recently been

applied to the solution of partial differential equations,

I10]. The difference equation may be regarded as leading

to a system of linear equations with a large number of

unknowns. The method effectively reduces the number of

unknowns involved so that a number of systems are to be

solved, 'each one of much lower dimension. In one case,

for example, using a grid with N+l intervals in the region

in each direction, N systems each with N unknowns are solved,

rather than one system with N - squared unknowns.

In section A, the method is applied to the solution of

Poisson's equation over a rectangle, following the paper of

Angel E101. In section B, the method is extended to a re-

lated eigenvalue problem by combining it with Stodola's

method. In section C, the method is extended to the solu-

tion of the biharmonic equation, by applying dynamic pro-

gramming twice. Finally, in section D, the method is

applied to the eigenvalue program involving V'U = X 2 U, again

by combining the method with Stodola's method.

A. DYNAMIC PROGRAMMING FOR PARTIAL DIFFERENTIAL EQUATIONS

Consider the solution of Poisson's equation

Uxx + Uyy 0 f(x,y) in A, (3.1)

where U = U(x,y) is subject to given boundary conditions

16



such as

U(x,y) - g(xy) on 6A. (3.2)

It may be noted that Eq. (3.1) is the Euler equation

associated with the variational problem

I(U) - Min If(U 2 + U 2 + 2fU) dxdy (3.3)
U AX y

where the function U is chosen from the class of functions

with first partial derivatives belonging to L2 over A, and

satisfying the boundary conditions of (3.2) on SA.

Let the region A be discretized by choosing n+l and

m+l equally spaced points in the independent variables

x and y respectively. Then Eq. (3.3) may be rewritten in

a discrete version with equal intervals as

n m[
I(U) - Min • X(Ui _ Ui )2 (3.4)

Ui i=l J=l "',

+ (uij - Ui-l ) 2 + 2fi~j Ujh 21,
'ij i,J iJiJ

where {Uoj 1, {U 1o}, {Unj 1, and {U i,} are determined

from the boundary conditions of Eq. (3.2). Now, if all terms

in Eq. (3.4) involving only boundary values were removed,

while not affecting the solution, a more convenient form

of. Eq. (3.4) is obtained

n m
1(U) = Min I I (U - u _l)5

Ui, i=l J=l ,3 J(.
-i,

+ r 2hi + m (Ui 2

J=l 2fi'jUij J=l ui..j

17



In vector notation Eq. (3.5) may be rewritten in the form

n
1(U) wM I (<ýR'•,> + <rR,UR> + SR (3.6)

UR i-i 2RR

+ <UR - UR_1, UR' - UR-1 + < fRR>)

In this, UR = (UR ''''' URm )T This relation now defines

a symmetric matrix i-, vectors rRa and fR' and a scalar

SR by

2 1 j

- (qj,,, where qi = -I ji-JI = (3.7)I 0 otherwise

- 2 UR,o J = 1

FR = (rRai w , where r = m2URm J rn-i
0 otherwise

FR = { 2h 2f Rj}

2 2
SR W UR,o + UR,m

The notation as in <rR, UR>, denotes the scalar product of

the two corresponding vectors. The matrix q remains constant

while FR and SR are functions of the boundary conditions

only.

Now in order to solve Eq. (3.6) a sequence of dynamic

programming problems was considered. Let

n
F= Min I ( , + <r (3.8)R UR'"._li=R 1

S+ s I + IT', - _• - l .. > + < , a >)

18



where V and Un is given by Eq. (3.2). Now Eq. (3.8)

can be rewritten as

'R(V) Min (<URIUR> + <FRI gR> + SR (3-9)

+ cUR 7,VUR-V + <FR I 7R> +' <OR+ib "R+1>

+. . + Sn + <n "n-1) "n -n-i> n+

This may be done since the minimization over UR+l,...,

.- 1 can be commuted with the minimization over U This

is a common technique of dynamic programming based upon the

principle of optimality, [8]. This allows Eq. (3.9) to be

rewritten as

FR(V) = Min <QR UR > + <;Re UR> + SR (3.10)

+ <UR - V, UR - V> + <ER' U-R> + FR+1(UR)I.

The final equation is

F n(V) =<UZf, Uý5 + <FJ Uf> + Sn (3.11)

<U -V, Un - V> + <fn' Un>'

and Un is known from the boundary conditions Eq. (3.2).

Since F. (V) is quadratic in V Eq. (3.11) may be rewritten

in the form

F R(V) R < 'R7, V> + <R V> + CR (3.12)

Now by substituting from Eq. (3.12) into Eq. (3.10) and

then differentiating with respect to UR an expression for

19



UR is obtained of the form

()+- R l) - R+1 + FR + I ]' (3-13)

This is obtained by substituting rel'ateý Eq. (3.13) into

Eq. (3.10) and then combining Eq. (3.10) with Eq. (3.12i,

the various quantities in Eq. (3.13) are defined by these

steps as

A Y + + ; + - R+ ) .(3.14)

CR CR+1 + SR - (I + Q + •(3.6),
_______ R +1 ~

bR+l + rRb,bR+1 + r R

2 I

with initial values determined from Eq. (3.11)'as'

•n - Y, (13.17)

S- --- 2U, (3.18)

Cn= <( + •) Un, n> + <- -0> + Sn (3.19)Cn n I+ 'a "n 1Fn Un n

The matrix (Y + Q + AR+I) is nonsingular, 1 . Thus it has

inverses which may be computed beforehand, si-nceit is'de-

pendent only upon the type of operator.

Due to the fact that 'only the values, of 11R are desired

the quantities CR need not be calculated.

The procedure is to! calculate the quantities in

Eq. ( 3 .14) repeatedly until T2 and 52 are obtained. Then

20



U is found from Eq.' (3.13) with V • Uo which is known
1 0

from the boundary conditions. Next, Eq. (3.13) is repeated-

ly solved using the stored values of 1R and UR, and the

last value of as V.

Thus, the problem was solved by n-I inversions of sym-

metric matrices of order m-2. While these matrices may be

large there are efficient computer routines available to

determine the inverses. Once the inverses are found, they

may be stored for'future use, since they are based only on

the geometry of the region A. Thus for several problems

over the same `reg.on the:inverses may be entered into the

program as data. Also they have the property that if lessf

than n+l gild 'points are required a redupced number of the

matrices may be used.

B. DYNAMIC PROGRPMMING FOR EIGENVALUE PROBLEMS

In the first section of this chapter it was seen that

dynamic programming could be used to solve partial differ-

ential equations. In thi's section, the program is modified

to solve a related.eigenvalue problem by Stodola's method.

Consider'the problem of the vibrating membrane consi-

dered in Chapter II. The differential equation for the

eigenvalues and eigenfunctions is

lUxx + Uyy -X 2 U in A, (3.20)

where'U. U(x,y) is subject to the boundary condition

U(xy) 0 on SA. (3.21)

21
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This problem was solved by two related methods. In

both Eq. (3,20)is regarded as a special case of Eq. (3.1)

in which

f(x.y) = -XU(x,y) in A (3.22)

and

f(xy) = 0 on 6A (3.23)

1. First Routine

The difficulty here was that the function f was

known only on the boundary and X was unknown. The first

step, to overcome this obstacle, was to choose a function

U°•x,y)which satisfied the given boundary conditions. Then

an estimate of X2 was obtained, say (XO)2, by using Ray-

leigh's formula. Next a new estimate of U. say U1 (x,y), was

obtained using dynamic programming to solve the equation

U Ix+ Uyy = _(XO)2 U0 = fO(x,y). (3.24)

By repeating this sequence of Rayleigh's formula and dyna-

mic programming, a good approximation to the minimum eigen-

value and the associated elgenfunction was obtained. The

next two eigenvalues and vectors were also obtained by the

process of forcing tne higher eigenfunctions to be orthogo-

nal to ones already obtained as was done in relaxation.

The inverse matrices used in the routine were calculated

in determining the first eigenvalue and eigenfunction;

they were then stored so that it was not necessary to recal-

culate them for subsequent eigenvalues.

22



2. Stodola's Method

The second form is more like the usual form of Sto-

dola's method and hence a brief of Stodola's technique is

given first.

An initial function Vo satisfying the boundary con-

ditions is selected. It may be considered to be of the

following form

Vo w aUi + a2U2 +... (3.25)

where a, is not equal to zero. For convenience V. was

normalized; the L. norm of Vo, I jvokI is defined as

MAX IVo(x,y)l IIV IJ; (3.26)
A

and j1VoIJ is set equal to one. Now consider
LVo -al a2 321

LUV- -... (3.27)

and

('mvo m ajUi + a[ 2  Ua +... (3.28)

In Eq. (3.28) it can be seen that the relative size of the

components U2 , U3,... are decreasing by a factor (X1/X2 )2,

(X,/•) 2 ,... respectively. After a few applications of the

operator, LI, to Vo, the leading term will dominate.

Thus the functions obtained will approximate V1, except

for a constant factor, and the ratio of successive iterates

will approach a constant, -1/X 2 .

2



3. Second Routine

This was applied as follows. Let Zm be defined by

the equation LZm = V so that

Z = L-1Vm_1. (3.29)

This equation was solved by dynamic programming. It was

found convenient to normalize each iteration. Let

V M _(3.30)

H1Zm1I

Then the approximation can be made

x 2• - 1 (3.31)

The sequence of functions V., Vl,... converges to U1 .

The process was terminated when successive approx-

imations were sufficiently close together, say,

V1Vm(x~y) - Vm_l(xy)I <E, (3.32)

where c is a preassigned small positive number. The result-

ing function Vm is an approximation to U1 , and X, is ob-

tained from Eq. (3.31).

C. DYNAMIC PROGRAMMING FOR A HIGHER-ORDER OPERATOR

In section A and B of this chapter it was shown how

dynamic programming could be used to solve Poisson's equa-

tion and the vibrating membrane program, respectively.

In this section, by another modification to the routine,

the biharmonic equation can be solved.
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Assume the problem to be solved is of the form

V'(U) - f(xy) in A, (3.33)

where U U(x,y) is subject to the constraints

{U . g(xy) on SA (3.34)

a2U/an2 = P(x,y) on 6A.

Clearly Eq. (3.33) may be rewritten in the form

V2 O(x,y) = f(x,y), (3.35)

where

V2 U(x,y) = t(x'y). (3.36)

Now, since U and ^ 2U/an 2 are both known as the boundary,

O(x,y) may be approximated on the boundary. On a rectangle,

for example, the following relations determine 4 on the

boundary

0(0,y) =-P(0,y) + Uyy (0,y) (3.37)

t(n,y) = P(n,y) + n (n,y)

C(xO) = -4(x,O) + Uxx (x,O)

t(x,m) = P(x,m) + Uxx (x,m).

The usual finite difference scheme may be used to approxi-

mate Uxx and Uyy and thus the relations of Eq. (3.37) may

be approximated by

I0 , = -PoJ hU0 I. 1 - 21% J + U0 I - (3.38)
S1i h 2
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n4 n ,j + (un-j+i - 2 + UnJi) (3.38)¢nsJ =njJ 2

¢I ="P,0 ( U+I0 2Ui' il0* h 2

S i + (Ui+i,o - 2Ui, 0 + Ui-lm)h 2

0 - + (U+ 1 , - 2Uim+U 1 m
i~m ~i~mh 2

for i = 1I..., n-1, J 1,..., m-2

and %0,0, On,0, 00,m, On*m are known from the boundary con-

ditions. Thus $(x,y) is now approximated on the boundary.

First Eq. (3.35) is solved by dynamic programming to obtain

the function 0 in the region. Then Eq. (3.36) is solved

by dynamic programming to obtain the desired solution.

D. DYNAMIC PROGRAMMING FOR HIGHER ORDER EIGENVALUE PROBLEMS

This method may be extended to the corresponding eigen-

value and eigenfunction problem much as before. One such

physical problem is that of a vibrating uniform plate with

hinged edges.

Assume that the differential equation has the form

V1U = x 2U, in A, (3.39)

and the boundary conditions are

U = --- = 0 on 6A (3.4O)
an

2

The technique of sections B and C may be applied in two

steps to the solution of the problem. Let 0 be defined as

0 = V2U. (3.41)
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Then the two equations to be solved are

VIO - XZU (3.42)

and

V2un+ n, (3 . 4 3 )

subject to the boundary conditions, Eq. (3.40).

In order to start the routine an initial estimate for

the function U(x,y), say {Uij 1, is made. The value of X

is estimated as was done in section B. Then Eq. (3.42)

and Eq. (3.43) are solved by dynamic programming to get the

next approximation {U j-. The same criterion for stopping

is used as that in section B.



IV. RAYLEIGH-RITZ METHOD (4,5,6,93

The Rayleigh-Ritz method has been used for many years

to obtaiii approximations to the solution of partial differ-

ential equations and eigenfunction problems. In this method

the problem is posed as a minimization problem, say invol-

ving an integral. Then some linearly independent functions

which satisfy the boundary ccnditions are chosen. The solu-

tion is approximated by a linear combination of these.

Finally the coefficients in the approximation are chosen

so as to effect minimization. This leads to an eigenvalue

problem involving symmetric matrices.

The functions chosen may be, for example, polynomials

of low degree, or trigonometric functions. Assume that

homogeneous boundary conditions are given. Let 4k = Ok(xy)

be n functions which satisfy these and approximate the solu-

tion U by

n
U(x,y) = C Ckk. (4.1)

k=l

A. PARTIAL DIFFERENTIAL EQUATIONS

In this section the solution of

U + U f(x,y) in A, (1.3)xx yy

is again considered. It is the Euler equation associated

with minimizing the integral
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fJ(UX + Uy + 2fU) dxdy. (4.2)
A

Substituting from Eq. (4.1) into Eq. (4.2) and integration

results in a function which may be written

I1 I(C1,..., Cn)o (4.3)

for functions of the form (4.1). The minimization of this

function and an approximate solution to Eq. (1.3) is thus

obtained by solving

a • O, k 1 l, 2,..., n. (4.4)

The effectiveness of the procedure of course depends upon

the choice of the approximating functions Ok(x,y).

B. EIGENVALUE PROBLEMS

The method is also applicable to eigenvalue problems.

Consider again the problem in Chapter II of finding eigen-

values and eigenfunctions for the equation

U + U m-XU in A (2.6)

xx yy

subject to the boundary condition

U(x,y) = 0 on 6A. (2.7)

In many problems X1 2, the lowest eigenvalue, iz the minimum

of the ratio of two integrals. This fact was shown in

Chapter II and Eq. (2.19).

If an approximation to U is chosen as in section A, since

each function satisfies the linear homogeneous boundary

condition, the sum shown in Eq. (4.1) satisfies it. If
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this sum is substituted into Eq. (2.19) the resulting values

define an upper bound for X, for all choices of the C's.

Further also, the C's may be chosen to give a least upper

bound over the subspace spanned by $l, 2*,..., 0n

If that approximation for U is substituted into Eq.(2.19)

the numerator and denominator become quadratic forms in

(CI,..., C ) = C. The numerator has the form

n a

il ;l a., C1 %, tC 1451=1J=l

where

aij J!(Oix J + ijy $ ) dxdy, (4.6)
A x x y y

and the denominator has the form

I IbCiCj = a C (4.7)

iti j=l2

where

b hJ - ffi $4 dxdy. (4.8)
A U

These define the matrices A and B. The first eigenvalue

X, winimizes the quotient in Eq. (2.19) and hence the mini-

mum value of

defines the minimum value of the quotient in the subspace

apanned by n',..., S
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To find this is equivalent to minimizing the quadratic

form

A M~inlt (14.*10)

subject to the constraint that the second quadratic form

assumes the value one

tf -a - 1. (4.11)

The problem may be solved in two steps. First find the eigen-

values and eigenvectors of B. Let the eigenvalues of

be wil, iJl, 2,..., n, and the associated normalized eigen-

vectors V1 . Let 7 be the matrix

* (Vi, V2 20,96 Vn) diag(1/WI,..., 1/wn). (4.12)

Then the transformation

U U 7 U (4.13)

reduces the constraint (4.11) to the form

1. (4.114)

condition (4.10) becomes

X12 = Min Utf -, (4.15)

where

E= T ,(4.16)

subject to the constraint (4.14).

Hence the value of X12 is the smallest eigenvalue of

the matrix E.
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Let Vi be the associated normalized eigenvector of E.

Then the corresponding minimizing function has coefficients

determined from Eq. (4.13)

= ~ (4.17)

This value of Xltis an upper bound for the first eigen-

value, the least upper bound in the space of functions

spanned by Oi,..., n tn a similar way the second eigen-

value of E furnishes an upper bound to the second eigenfunc-

tion, etc.

For simple problems, at least, it seems easy to choose

the O's so that a good bound for the lowest eigenvalue re-

sults. It is not clear how to make good choices to get

good estimates for the higher eigenvalues.
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V. OALERKIN'S METHOD (4o5,61

Sometimes the solution to boundary-value problems in-

volving partial differential equations can be obtained by

forming. an associated functional in the form of a definite

integral which is to be made stationary. For a problem of

this type, the Rayleigh-Ritz method is often an effective

procedure for the determination of an approximate solution.

However, in many instances it is difficult to find this

functional. In such cases, the Galerkin method is often

effective.

A. PARTIAL DIFFERENTIAL EQUATIONS

Consider the linear homogeneous boundary value problem

of the form

LU(x,y) = f(x,y), (5.1)

subject to linear homogeneous boundary conditions. The

symbol L stands for a linear differential operator, such

as V2 .

Suppose that an approximate solution is taken in the

form

n
Un(x,y) = I Ckok(x,Y), (5.2)

k=l

where the coefficients Cl,...I Cn are constants, to be de-

termined, and, as in the previous chapter, the functions

OV''' On are picked to satisfy the homogeneous boundary
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conditions. The coefficients are dependent upon the number

of functions picked and therefore, must be. recomputed if

a larger number of functions are later chosen. While the

function U satisfies the boundary conditions, it will' not,

in general, satisfy Eq. (5.1)o Thus there'is a residual,

LU n(x,y) - f(xy) = R n(Xy)' (5.3)

which can be viewed as an error or penalty function. Assume

the solution for U(x,y) can be expressed by an infinite

complete series of these linearly independent functions

in the form

U(x,y) c Ck k(XY). (5.4)k=l

Now Un(x,y) in Eq. (5.2) represents a sequence of partial

sums which approximate U(x,y), Noil if the condition is

imposed that L(Un) - f be orthogonal to each function

i(x,y) on the demain A, the following set of equations

are obtained (55)

Af(L(Un f) Dk dxdy = 0, for k 1', 2,...) n

or by use of Eq. (5.3) (5.6)

ffRn(xy) 4k(x,y) dxdy = 0, for k = 1, 2,..., h.

If Eq. (5.6) is to hold as n it follows that

lim Rn = 0 (5.7)
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Let R(xy) be an arbitrary function satisfying the
ii I

homogeneous boundar? conditions. Since(O )for k - 1, 2,...
tk

forms a complete set of functions constants al...., an,...

can be found such that

R(xy) - [ ak k(x,y). (5.8)k~l,

Thus,

jf lim R n(x,y) n(x,y) dxdy 0, (5.9)An÷

for any arbitrary n(x,yY), so that by the fundamental lemma

of variational calcqlus Eq. 65.7) is true "almost every-

where". Suppose further that, L(Un) * L(U);then Eq. (5.1)n
ho)ds, by the use of Eq. (5.7).

Galerkin's Method requires that the error function

Rn(x,y) be orthogonal t each of the functions tk' or that

Eq. (5.5) and Eq.: (5.6) hold. Now by substituting Eq. (5.2)

into Eq. (5.5)an integral is obtained of the form

n

A' L( [k, k) -k f " dxy 0 (5.10)

Ii, 2•. ., n.

This results in a system of n linear algebraic equations

in n unknowns C., Furthermore, the system is in-

homogeneous unless the function f(x,y) is orthogonal to

each k k(x,y). Eq. (5.10) may be rewritten
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Scj ffL(O4 ) *k dxdy ffftk dxdy, (5.11)

jul A A

k 1, 2,..., n.

In matrix notation this becomes

where

= (C1 C2 ... C n)T (5.13)

Sm (b j} i. = 1, 2,..., n, (5.14)

J = 1, 2,..., n

F (f 1 '"" fn)T (5.15)

and

b =j ffL(Oi) 0 1 dxdy (5.16)
A

fi •fffi dxdy (5.17)

The constant4 C are obtained by solving the system Eq.

Eq. (5.12).

Collocation, a convenient variation. One way to get

an approximate solution for the C's is the following.

Choose n points of the region A. Evaluate the terms in

the integral of Eq. (5.10) at these points. This yields n

equations for the unknowns C . This method, called colloca-

tion, is not generally so accurate but it is quicker than

carrying out the integrations to define the coefficients

Eq. (5.16) and Eq. (5.17).
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Galerkins method is also useful to obtain a direct

solution of variational problems. Assume it is desired to

minimize a functional of the form

I(V) 0 ffF(xSy VVx,V y) dxdy. (5.18)
A

It is desired to find an extreme value for the functional

subject to the condition that V(x,y) is prescribed on the

boundary 6A of the domain A. It is known that if the exist-

ence of an extremizing function U(x,y) is assumed and that

the f,'iction F possesses continuous derivatives of the

second order with respect to its arguements, there results

the condition

ffn(x,y) FU - - F - - dxdy = 0 (5.19)
A x y

for an arbitrary function n(x,y) which has piecewise con-

tinuous derivatives in A and which vanishes on 6A. This

is derived by considering a function of the form

V(x,y) = U(x,y) + cn(x,y), (5.20)

and differentiating with respect to E. If n(x,y) is other-

wise arbitrary, then one form of the fundamental lemma of

variational calculus requires that

u F u V - FUy = 0. (5.21)

Suppose now that n(x,y) is the kth function 0k(X,Y) and

that an orthogonality requirement is imposed as
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fjk(Fu Fu Fuy) dxdy = 0, (5.22)
"ff-ok ax - y-

for k 1, 2,..., n.

Finally, assume that the function U(x,y) which effects the

minimization can be represented satisfactorily by a finite

series

n
Uty(x,y) = 0 Ok'Dk(x,y). (5.23)

k=l

Eq. (5.22) then defines a system of n algebraic equation

to be solved for the n unknowns el,... c'. Thus Galerkin's

method is applicable in the solution of variational problems.

However, much of its value lies in the fact that it is not

necessarily connected with a variational procedure.

B. EIGENVALUE PROBLEMS

Suppose that it is desired to solve an eigenvalue prob-

lem of the form

LU = XU(xy) in A, (5.24)

and

U= 0 on 6A. (5.25)

Assume as in the first section that the function U(x,y)

can be approximated in the form of Eq. (5.23). The problem

is solved by considering equations of the form

ff(L(Un) - UnJ 4j dxdy = 0 (5.26)

forJ = 1, 2,..., n.
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Now by substituting for Un the functions Ok a system is ob-

tained of the form

I (ai )- X0 (5.27)
Jul A

for i = 1, 2,..., n,

where

a ffL(@1 ) 5 dxdy (5.28)ai'J A

S= HO? dxdy (5.29)

This has nontrivial solutions for the C's if, and only if,

A Ia&,j- kyi,j 1 = 0, (5.30)

where A is the determinant of the matrix. Thus the values

of Xi may be found by solving the characteristic equation

(5.30). For each eigenvalue Xi there corresponds a system

of equations (5.28) to be solved for the eigenvector

n

kI (akj - XiYk,j) Ck = 0 (5.31)

for J 1, 2,..., n.

Now for each eigenvalue Xi this system of n homogeneous

equations may be solved to give the values Ck (i), where

this coefficient corresponding to the ith eigenvalue.

Thus the elgenvalues are obtained, with their correspond-

ing eigenvectors. The functions 0i should be chosen to

reflect whatever characteristics the solution is felt to

have.
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VI. DISCUSSION OF VARIOUS METHODS

FOR SOLVING EIGENVALUE PROBLEMS

In Chapters II, III and IV, three methods were developed

for finding the first three eigenvalues and eigenfunctions.

All three gave satisfactory values for the eigenvalues and

eigenfunctions, and satisfactory times for the rather simple

problems considered here. These methods were used to obtain

solutions of the following two problems:

Uxx + Uyy X-2U in A, (6.1)

subject to the constraint

U(xy) - 0 on 65A; (6.2)

and

V4U = X2U in A, (6.3)

subject to the constraints

U(x,y) = QýU = 0 on 6A. (6.4)
an2

In this chapter the computation and numerical results are

discussed and compared.

In all of the methods a set of functions was needed.

In the Rayleigh-Ritz method these were the basis for tht7

approximating functions; in the other two methods they

were the inittal estimates of the functions. The ones usu-

ally chosen were
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U, (x - x2 )(y - y'), (6.5)

0
U2 = (x - Xr)(y - y')(½ - x), (6.6)

u 0 (x - x2)(y - y,)(g - y). (6.7)

Step functions were also used as first estimates in the

iterative methods; these increased the number of iterations

required some, but not much, particularly for the higher

modes.

Usually the range of the independent variable was di-

vided into ten equal sub-intervals, in going to a differ-

ence equation. In the Rayleigh-Ritz method this did not

yield sufficient accuracy and it was found necessary to go

to forty intervals. Twenty-five intervals were also used

in some computations; the intermediate number was chosen

because of storage requirements in dynamic programming.

In the Iterative procedures some convergence or stop

criterion was needed.When a relaxation procedure was used

together with Rayleigh's formula for estimating the eigen-

value, computation was terminated whenever the eigenvalue

did not decrease by at least 0.002. In Stodola's method,

the routine was terminated whenever the norm of the change

in the function U(x,y) was less than 0.002.

The relaxation method required the least time for this

simple problem. Most of the time required for dynamic pro-

gramming was spent in inverting the matrices. Dynamic pro-

gramming yielded a very accurate approximation to the

eigenfunctlon.
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For some reason it was necessary to use forty intervals

to get the desired accuracy with the Rayleigh-Ritz method.

When ten intervals were used, the eigenvalues of the matrix

were significantly too small, apparently due to errors

in the integration and transformation routines. There were

at least two other disadvantages of the Rayleigh-Ritz method.

First it was tedious to program. Second, there may be some

difficulties in choosing the functions 0i, particularly

if some of the higher modes are desired. The results of a

set of computations are given in Computer Output 5 , in-

cluding the three eigenvalues, the associated coefficients

and the values of the corresponding functions at various

points. The routine is shown in Computer Program 5. The

necessary matrix transformations and solutions for the

eigenvalues were carried out using programs TRED2 and TGL2

respectively, [7:.

The simple relaxation method of Chapter II had the ad-

vantage of being the simplest to program and to run. It

had the disadvantages that terminal convergence was slower

than in the method of dynamic programming and if a large

number of points were involved the computing time increased

greatly. The results -I' a set of computations are given

in Computer Output 1. The routine is shown in Computer

Program 1.

Dynamic programming had the advantage of yielding very

accurate values in a small number of iterations. The dis-

advantages were that it was relatively difficult to program
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and thnt it took quite a bit of time to generate the inver-

ses of the matrices required. Computer Output 7 shows the

results by this method and the program used is in Computer

Program 6.

The values of the eigenvalues obtained by the three

methods are compared in Table I. In Table I are the eigen-

values for the first differential equation, the difference

equation with ten intervals, together with the results of

.he computations, the number in parenthesis by an entry

indicates the number of intervals used in the computation.

The eigehvalues for forty intervals are intermediate between

those for ten and those for the differential equation.

Differential Difference Rayleigh Relaxation Dynamic

Equation Equation(10) Prograwmtng

4.44289 4.42463 4.4110 (25) 4.42486(i0) 4.42442(10)

4.44751(40) 4.44611(40) 4.43753(25)

7.02482 6.92714 7.23029(40) 6.92736(10) 6.92717(10)

7.02482 6.92714 7.24707(40) 6.92736(10) 6.92717(10)

Table I.

Comparison of First Three Eigenvalues for Eq. (1.1)

The three methods gave close agreement for the first

eigenvalue but tended to differ on the next two.

For the differential equation of higher order, only

relaxation and dynamic programming were compared; these

comparisons are shown in Table II using ten intervals.



Differential Difference Relaxation Dynamic
Equation Equation(l0) Programming

19.739227 19.577361 19.60767 19.57777

49.348040 47.985220 48.00555 47.98473

49.348040 47.985220 48.02386 47.98474

Table II.

Comparison of First Three Eigenvalues for Eq. (1.3)

Computing times were similar, around twelve seconds

for each. Computer Output 2 shows the results for the re-

location method, and the program is Computer Program 2.

Computer Output 9 shows the results for dynamic programming

and the program is Computer Program 6.
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VII. DISCUSSION OF THE SOLUTION OF A

PARTIAL DIFFERENTIAL EQUATION BY VARIOUS METHODS

In Chapters III, IV, and V. three methods were developed

for solving partial differential equations. These methods

were used to obtain solutions of the following problems:

Uxx + Uyy - 2(x 2 + y 2  x - y) in A, (7.1)

subject to the constraint

U(x,y) = 0 on 6A; (7.2)

and

V4U-8 in A, (7.3)

subject to the constraints

U(x,y) - 0 on 6A

--U = 2(y _y 2 ) for x = 0 (7.4)
an 2

• 2 UJ
-- = -2(y _y2 ) for x = 0
an2

LU = 2 (x -x2) for y = 0

an2

-=-2(x -x 2 ) for y=-O

3n2

In this chapter the computation and numerical results are

discussed.
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In Galerkin's method, an approximation for the function

U(x,y) satisfying the constraint Eq. (7.2) was made by choos-

ing suitable functions Oj(x:,y), 02(x,y) and 4a(xy) to satis-

fy the constraint in Eq. (7.2). The approximatioi. for U(xy)

was

U(x,y) - Ci4(x,y) + C202(x,y) + Ca0s(x,y) (7.5)

S(X -x 2 )(y -y 2 )(Ci +yxC2 +XlyC03).

The values of Ci, C2 and C3 were obtained by techniques

described in Chapter V. Computer Output 3 shows the values

of Ci, C2, C3 and the function U(x,y) at various points.

In this method the region A was sub-divided into ten equal

sub-intervals for each independent variable for the inte-

gration routine. A second approximation for U(x,y) was made

for this method as

U(x,y) = C10, + C20 2 + C3 O3 (7.6)

= (x -x 2 )(y -y 2 )(xCi + yC2 + XyC 3 ).

The purpose of this was as follows. There generally is some

skill and art involved in choosing the functions 013.., On

well. In fact in the first choice 01 is actually the desired

function. The second set of functions was choser. so as to

get some feel for the consequences of a poor choice of the

O.'s. The values of C,, CZ, C3 and the function at various

points is shown in Computer Output 10.

The numerical solution of Eq. (7.1) by dynamic program-

ming with the constraint of (7.2) yielded the values in
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Computer Output 6. Again the region was divided as was

done in Galerkin's method.

In the Rayleigh-Ritz method, an approximation for the

solution, U(xy), satisfying Eq. (7.1) was made by choosing

suitable functions *,(x,y), 02(x,y) and 0s(x,y) to satisfy

the constraint (7.2). The approximation for U(x,y) was

U(x,y) - C101 + C262 + C3, 3  (7.7)

" (X - x 2 )(y - y2 )(C, + xyC 2 + x~y2 C3 ).

The values of C1, C2, and C's were obtained by techniques

described in Chapter IV. Computer Output 4 shows the val-

ues of C1, C2, C3 and the values obtained for U(x,y) at

various points. In this method it was found necessary to

sub-divide the region into forty equal sub-intervals for

each independent variable in order tc get satisfactory

accuracy.

The best approximation to U(x,y) was obtained by Galer-

kin's method using Eq. (7.5), where 01 was the desired

function. There was no error and the method was able to

detect that this was the case. However, when Eq. (7.6)

was used the maximum error was eight thousandths.. The time

required to solve the problem by this method was 0.57

seconds.

The problem was solved by dynamic programming in three

seconds with accuracy to six digits. However, over half

of the computer time was spent obtaining inverses, which

could have been fed as data from solving Eq. (6.1) in this

particular case.
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The Rayleigh-Ritz method required jyst under ten seconds

and had a maximum error of two thousandths.

Because of the time required and the accuracy bbtained

by Rayleigh-Ritz, only Galerkin's method and dypamic pro-

gramming were used to' solve Eqý (7.3).

Galerkin's method obtained the same values and accuracy

in the solution of Eq. (7.3) as it did in the solution to

Eq. (7.1) and took the same time.

Dynamic programming obtained the same degree of accuracy

in solving Eq. (7.3) as it did in solving Eq. (7.1) and

took three seconds. The results are shown in Computer

Output 8 and the program is Computer Program 7.
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VIII. CONCLUSION

The three methods considered for elgenvalue problems

yielded satisfactory values for the eigenvalues and the

eigenfuActions. Generally, the relaxation method seemed

to, be most satisfactory. It Was straight-forward to pro-

gram,, and it was faster then Rayleigh-Ritz and dynamic

programming. It converged rapidly even if step functions

-were used on s~veral different tests figures, such as the

L-shaped and triangular regions.

The dynamic programming method converged in the same

number of iter4tions as. relhxation, but gave poorer esti-

mates of the second hnd third eigenvalues. It of course

was much more difficult to program and required more com-

puting time due to the needed inverses.

The Rayleigh-Ritz method seemed to have little to re-

commend it due to the computer time required. It required

much finer meshing ip order to obtain a satisfactory accu-

racy. The only advantage it had was that no iteration was

required.

Of the three methods considered in the solution of

Poissoln's and the biharmonic equations Galerkin's method

was the fastest and gave accuracy comparable to the Ray-

leigh-Ritzimethod. It was also the simplest of the three

methods Ltsed to program.
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Dynamic programming gave the best accuracy generally,

but it required more computer time than Galerkin's method.

Rayleigh-Ritz had the same difficulties as it did in

the eigenvalue problem and was considered of little use.

While dynamic programming required more time for the

solution of both eigenvalue problems and elliptic partial

differential equations, it was very powerful. It only

required a knowledge of the function U on the boundary.

It can be extended to irregular regions (1]. It obtained

very good accuracy. Much of the time was spent computing

the inverses. If the same points were used in solving

several different problems, these inverses could be cal-

culated once and thereafter entered as data, reducing the

computer time greatly.
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COMPUTER OUTPUT l.(RELAXATION)

EIGENFUNCTION=1

PATH= 8 OMEGA= 4.424858

XY U(X, Y)

0 1 1 0 0 1 0.09719044

0 * 1 0 . 3 0.2508801

0 * 1 0 0 5 0.3094832

0 0 1 0 * 7 0*2526796"

0 0 1 0 , 9 0.09705645

0 6 3 0 a 1 0.2508801

0 a 3 0 a 3 0.6512997

0 e 3 0 a 5 0,8061690

0 o 3 0 * 7 0.6586339

0 * 3 0 , 9 0.2531579

0 0 5 0 1 1 0.3094832

0 . 5 0 * 3 0.8061690

0 o 5 0 * 5 1.000000

0 * 5 0 * 7 0.8169372

0 * 5 0 q 9 0.3137754

0 s 7 0 0 1 0.2526796

0 * 7 0 * 3 0°6586339

0 .7 0 ° 5 0.8169372

0 o 7 0 a 7 066658412

0 * 7 0 a 9 0.2551157

0 * 0 . 1 0.09705645

0 0 9 0 . 3 0.2531579

0 0 9 0 . 5 0.3137754

0 * 9 -0 0 7 0.2551157
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COMPUTER OUTPUT 1.(RELAXATION)

EIGENFUNCT!CN=2

PATH=l1 OMEGA= .6.927361

X V U(XlY)

oa 1 0 *1 0.1853049

o . 1 0 *3 0, 4886459

0 *1 0 0 5 0.6086538

o *10 . 7 0.4958898

0 *1 0 . 9 0.1895596

0 *3 _0 a 1 0.3032387

0 *3 0 * 3 0.8008109

0 *3 . 0, * 5 0.9981067

0 o 3 0 * 7 0,811699 3

0 * 3 0 * 9 0.30993'11

0 a 5 0 0 1 C*001278793

0 . '5 0 *3 0.008393560

0.a5 0 *5 0.01233941

0 a 5 0 *7 0.008128799

0 . 5 0 *9 0.001685064

0 * 7 0 *1 -0.3083511

O * 7 0 *3 -0.8038315

0 . 7 0 *5 -0.9953710

0 * 7 0 *7 -0.8089499

O * 7 0 6 .9 -0.3103257

0 *9 0 * 1 -0 * 19.21543

0 9 0 *3 -0.50C6261

0 5 0 *5 -0.6194295

o0 91 0 *7 -0.5025631



COMPUTER OUTPUT l.(RELAXATION)

E I GEN FUNCT I ON= 3

PATH= 1l OMEGA= 6.927361

X Y U(XY)

0 * 1 0 * 1 0.1857997

0 * 1 0 * 3 0.3045443

0 * 1 0 * 5 0.002898388

0 1 1 0 * 7 -0.3070407

0 • 1 0 * 9 -0,1916551-

0 * 3 0 * 1 0.4894530

0 * 3 0 a 3 0*8029368

0 3 3 0 * 5 0,01102810

.0 * 3 0 * 7 -0s8017028

0 * 3 0 * 9 -0o4998162

0 * 5 0 1 1 0,6086553

0 * 5 0 o 3 0.9981196

0 . 5 0 a 5 0.01235584

0 * 5 0 a 7 -0.9953650

0 * 5 0 * 9 -0,6194320

0 * 7 0 * 1 0.4950783

0 1 -i 0 * 3 04.8095817

0 * 7 0 * 5 0.005508117

0 o 7 0 * 7 -0,.8110784

0 . 7 0 * 9 -0,5033802

0 * 9 0 1 0.11890559

0 s 5 0 * 3 0,3086166

0 * 9 0 . 5 5. 926900'-05

0 , 9 0 , 7 -0,3116446
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A

COMPUTER OUTPUT 2.(RELAXATION)

EIGENFUNCT ION-1

P Al H= 17 OMEGA= 19.60767

X y U(X$Y)

0 ° 1 0 1 t 0,1011795

0 * 1 0 ° 3 0.25"14610

0 ° i ( 3 5 0.3156426

0 ° 1 0 7 C.260048 9

0 1 3 0 * 9 0.1008759

a . 3 0 * 1 0.2580318

0 °3 .4 0.6597930

0 ° 3 0 * 5 0o8128?56

0 * 3 0 *f 0.6714125

0 * 3 0 * 9 0,2608653

0 . 5 0 * 1 0.3149233

0 * 5 0 o 3 0,8084638

0 * 5 0 * 5 1.000000

0 a 5 0 7 0.8271890

C * 5 0 * 9 0.3214785

0 *• 0 * 1 0.2583916

0 * 7 0 B 3 0.6639176

0 * 1 0 o 5 0.8214267

0 * 1 0 o 7 0*6778069

0 * 7 0 * 9 0.2627081

0 9 0 1 C.1004035

0 9 0 * 3 0.2579977

0 a 9 0 ° 5 0.3188558
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CCMPUTER OUTPUT 2.,(RELAXATION)

EI GENFU NCT ICN=2

PATH=16 OMEGA= 48.00555

X Y U(XfY)

0 1 1 0 o 1 0.1909801

0 1 1 0 * 3 0.4904021

0 1 1 0 * 5 0.6059132

0 * 1 0 7 7 0.4979762

0 1 1 0 , 9 0.1925782

0 * 3 0 • 1 0.3037586
0 o 3 0 . 3 0.0884125

0 a 3 0 I 5 0.9826701

0 * 3 0 w 7 0,8096838

0 * 3 0 * 9 0.3130895

0 * 5 0 * 1 0o003429962

0 * 5 0 s 3 0.01207077

0 5 0 , 5 0.01897281

0 5 0 . 7 0.01404283

0 * 5 0 0 9 0.004551671

0 * 7 0 c 1 -0.3064085

0 * 7 0 * 3 -0°7943833

0 * 7 0 , 5 -0.9861545

0 * 7 0 a 7 -0,8114642

0 * 7 0 * 9 -0.3132687

0 * 9 0 1 1 -0.1937618

0 * 9 0 , 3 -0,5022484

0 , 9 0 * 5 -0.6227177
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COMPUTER OUTPUT 2*(RELAXATION)

EI GENFUNCTiON=3

PATHw19 OMEGA= 48.602386

X Y U(XY)

0 * 1 0 * 1 0.1851881

0 0 1 0 * 3 0.3020115

0 * 1 0 • 5 0.009329475

0 • 1 0 . 7 -0.3049613

0 • 1 0 . 9 -0,1935259

0 * 3 0 * 1 0.4791670

0 * 3 0 * 3 0*786'0626

0 * 3 0 * 5 0.02708434

0 * 3 0 * 7 -0.7933792

0 * 3 0 0 9 -0.5036968

0 a 5 0 0 1 0,5902148

0 e 5 0 o 3 0.9785894

0 * 5 0 * 5 0,03599443

0 e 5 0 * 7 -0.9824019

0 * 5 0 * 9 -0.6229793

0 * 7 0 * 1 0.4810330

0 7 .0 o 3 0.7979080

0 * 7 0 • 5 0.02484581

0 * 7 0 * 7 -0.8038256

0 .7 0 .9 -0.5073704

0 . 9 0 1 1 0.1851680

0 * 0 a 3 0.3065956

0 * 9 0 * 5 0.007537059
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COMPUTER OUTPUT 3.(GALERKIN)

VALUES OF C(!) ARE

Cl a 1.000000

C2 = 0

C3 = 0

X Y U(X,Y)

0 • 1 0 . 1 0.008099992

0 1 0 * 3 0.01889999

0 .1 0 .5 0.02249999

0 • 1 0 o 7 0.01890001

0 * 1 0 . 9 0.008100022

0 .3 0 •1 0.01889999

0 .3 0 * 3 0.04409999

0 .3 0 .5 0.05249999

0 3 0 .7 0.04410003

0 * 3 0 . 9 0.01890005

0 5 0 . 1 0o02249999

0 . 5 0 3 0.05249999

0 * 5 0 o 5 0.06250000

0 a 5 0 * 7 0.05250004

0 o 5 0 * 9 0.02250007

0 . 7 0 . 1 0.01890001

0 . 7 0 o 3 0o04410003

0 * 7 0 • 5 0.05250004

0 . 7 0 . 7 0.04410006

0 .7 0 . 9 0.01890007
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COMPUTER OUTPUT 4.(RAYLEIGH)

VALUES OF C(I) ARE

Cl = 1.120410

C2 = -0,5808935

C3 = 0.3500372

x y U(X,Y)

0 .25 0 .25 0.03816108

0 .25 0 .50 0.04937190

0 .25 0 .75 0.03599290

0 .50 C .25 0.04937190

0 .50 0 .50 0.06231650

0 .50 0 .75 0.0446."59

0 .75 0 .25 0.03599290

0 .75 0 .50 0.04461559

0 .75 0 .75 0.03179573
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COMPUTER OUTPUT 5.(RAYLSIGH)

EIGENFUNCTyyON= OMEGA= 4o447512

THE VALUES OF C( I) ARE

Cl = 29*89044

C2 = 0003808264

C3 = 2*580980

X Y U(X#Y|

0 .25 0 .25 1.073552
0 .25 0 .50 1.401157
0 .25 0 .75 1.028184
0 .50 0 .25 1.,3135S
0 .50 0 .50 1.868153
0 .50 0 .75 1.370868
0 .75 0 o25 1o073485
0 .75 0 .50 1,401070
0 .75 0 .75 1.028116
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COMPUTER OUTPUT 5.(RAYLEIGH)

EIGENFUNCTION=2 OMEGA= 7.230292

THS VALUES OF C(1) ARE

Cl = 9.664003

C2 = 112.0784

C3 a -112.0294

x Y U(X,Y)

0 .25 0 .25 03401793
0 025 0 .50 1.766417
0 .25 0 .75 2.309447
0 .50 0 .25 -0.8598440
0 .50 0 950 0. 6040002
0 .50 0 .75 1,765845
0 .75 0 .25 -1,629948
0 °75 0 .50 -0.8604184
0 .75 0 .75 0.3393202
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COMPUTER OUTPUT 5.(RAYLEIGH)

EIGENFUNCTION=3 OMEGA= 7.247070

THE VALUES OF C(i) ARE

Cl = 9,656152

C2 = -112.4433

C3 = -111,6595

X Y U(XIY)

0 025 0 125 -1.630179

0 *25 0 *50 -0.8650630
0 .25 0 .75 0.3325842
0 .50 0 .25 -0.8558773

0 .50 0 .50 0.6035087
0 .50 0 .75 1.761141

0 .75 0 .25 0.3463630

0 .75 0 .50 1.770327
0 *i5 0 .75 2.309128



COMPUTER OUTPUT 6.(DYNAMIC)

X y U(X,Y)

0 1 1 0 o 1 0.008099854

0 .1 0 * 3 0.,01889967

0 * 1 0 * 5 0.02249958

0 .1 0 .7 0.01889964

0 .1 0 .9 0008099858

0 * 3 0 . 1 0.01889966

0 3 0 .3 0.04409914

0 .3 0 .5 0.05249893

0 * 3 0 7 7 0.04409913

0 * 3 0 . 9 0.01889965

0 .5 0 o 1 0.02249958

0 5 0 .3 0.05249896

0 .5 0 .5 0.06249879

0 .5 0 . 7 0.05249900

0 .5 0 . 9 0.02249960

0 e 7 0 . 1 0.01889965

0 * 7 0 o 3 0o04409916

0 . 7 0 . 5 0.05249896

0 7 7 0 * 7 0.04409920

0 * 7 0 . 9 0.01889972

0 9 9 0 * 1 0.C08099854

0 * 9 0 * 3 0.,01889966

0 . 9 0 o 5 0.02249962

0 1 ; 0 * 7 0.018-8997.2

0 * 9 0 * 9 0.008099906
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COMPUTER OUTPUT 7,(D'#NAMIC)

EIGENFUhNCTInN=l

PATH= 4 OMEGAu, 4.423473

X y U(XtY)

0 ; 1 0 • 1 0.09554338

0 1 1 0 . 3 0.25009ý3

0 * 1 0 * 5 C.3091003i I

0 . 0 * 7 0.2500929

0 e1 0 9 0.09554338

0 * 3 0 1 ' 0.2500930

0 ,3, 0 .3 0.6546414

0 * 3 0 * 5 0.8090985

0 * 3 0 e 7 0.6546412

0 . 3 0 9 0.2500929

0 e 5 0 1 I C.3091002

0 . 5 0 e 3 C.8090987

0 , 5 0 * 5' 1,000000

0 * 5 0 * 7 0.8090994

0 . 5 0 .9 C.3091004

0 * 7 0 * 1 0.2500930

O 7 0 * 3 0.6546419

0 .7 0 .5 0.809Q992

0 0 7 0 o 7 0.65,46427

0 7 0 ;* 0.2500940

0 * 0 * 1 0.09554315

0 .9 0 .:3 0.2500930

0 * 9 0 * 5 0.309101/0
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COMPUTER OUTPUT 7.(DYNAMIC)

El GENFLINCT ICN2

PATH- 6 OMEGA= 6.927172

X Y U(XIY)

0 0 1 0 1 0.1913275

0 0 1 0 e 3 0.5004815

0 • 1 0 0 5 0.6183150

0 1 1 0 . 7 0.5004799

0 * 1 0 0 9 0.1913269

0 • 3 0 0 1 0.3092604

0 * 3 0 e 3 0.8089828

0 e 3 0 o 5 0.9994567

0 . 3 0 s 7 0o8089805

0 , 3 0 . 9 0.3092589

0 o 5 0 • 1 1.959012*9-06

0 . 5 0 * 3 3.7506421-06

0 9 5 0 . 5 2.407420#-06

0 . 5 0 e 7 -4.5483196-07

0 . 5 0 * 9 -7.790408'-07

0 . 7 0 . 1 -C.3092566

0 , 7 0 * 3 -0.8089775

0 , 7 0 * 5 -0.9994535

0 e 7 0 o 7 -0.8089827

0 o 7 0 . 9 -0.3092611

0 . 9 0 • 1 -0.1913257

0 . 9 0 . 3 -0.5004784

0 , 9 0 . 5 -0.6183146
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COMPUTER OUTPUT 7e(DYNAMIC)

EIGENFUNCTION=3

PATH=1 OMEGA= 6.927173

X Y U(X,Y)

0 * 1 0 . 1 0.1913257

0 • 1 0 * 3 0.3092576

0 • 1 0 a 5 -1.199204'-06

0 * 1 0 ? 7 -0.3092595

0 * 1 0 * 9 -0.1913273

0 * 3 0 , 1 C$5004785

0 * 3 0 . 3 0,8089781

0 * 3 0 e 5 -1.,8019751-06

0 * 3 0 a 7 -0.8089815

0 .3 0 . 9 -0.5004808

0 * 5 0 * 1 0.6183135

0 o 5 0 , 3 0.9994553

0 * 5 0 . 5 1.738089'-06

0 * 5 0 * 7 -0.9994555

0 * 5 0 a 9 "-0.6183147

0 . 7 0 * 1 0.5004803

0 * 7 0 . 3 C.8089837

0 . 7 0 , 5 4.7658011-06

0 . 7 0 . 7 -0.8089792

0 , 7 0 * 9 -0.5004812

0 * 9 0 a 1 0.1913269

0 * 9 0 * 3 0.3092602

0 0 9 0 , 5 2.622819'-06
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COMPUTER OUTPUT 8,(DYNAM4IC)

X Y U(XY)

0 * 1 0 . 1 0,008099731
0 .1 0 . 3 0.01889934
0 * 1 0 . 5 0.02249917
0 .6 0 * 7 0.01889930
0 * 1 0 . 9 0.008099727

* 3 0 * 1 0.01889932
0 . 3 0 . 3 0.*04409828
0 * 3 0 * 5 0.05249788
0 3 0 0 7 0.04409826
0 a 3 0 , 9 0.04•89930
0 . 5 0 . 1 C*02249917

0 . 5 0 a 3 0.05249792
0 * 5 0 . 5 0.06249751
0 , 5 0 6 7 0.05249795
0 . 5 0 . 9 C,02249918
0 . 7 0 . 1 0,01889931
0 4 7 0 . 3 0-04409831
0 * 7 0 e 5 0.05249793
0 . 7 0 * 7 0,04409834
0 . 7 0 . 9 O.01689938
0 . s 0 . 1 0.008099716
0 9 0 . 3 0.01889932
0 * 9 0 , 5 0902249920
0 * 9 0 o 7 0.01889938
0 0 0 . 9 0.008099772
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COMPUTPR OUTPUT 9.(DYNAMIC)

,IGENFUNCTION=1

PATH= 3 OMEGA= 19.57630

x VU(Xy

0 . 1 0 a 1 0.09549332

0 0 1 0 . 3 0.2500034
0 . 1 0 . 5 C.3090197
0 6 1 0 . 7 0.2500030

0 * 1 0 . 9 0.09549332

0 * 3 0 * 1 0.2500032

0 * 3 0 . 3 0.6545131

0 * 3 0 . 5 0,8090189
0 , 3 0 , 7 0.6545127

0 * 3 0 * 9 0.2500032

0 * 5 0 , 1 0.3090197
0 ° 5 0 * 3 0.8090194
0 * 5 0 * 5 1.000000
0 * 5 0 * 7 C.8090203

0 . 5 0 , 9 0.3090200

0 * 7 0 . 1 0.2500033
0 a 7 0 . 3 0.6545139

0 . 7 0 - 5 0.8090203

0 . 7 0 7 0.6545147

0 o 7 0 * 9 0.2500044
0 . 9 0 • 1 0.09549326
0 * 9 0 * 3 0.2500034

0 . 9 0 * 5 0.3090206
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COMPUTER OUTPUT 9.(DYNAMIC)

EIGENFUNCTI ON=2
PATH= 4 OMEGA= 47.98485

X Y U(XIY)

0 * i 0 a 1 C.1911072
0 1 0 , 3 0-5001713
0 * 1 0 . 5 0.6181207
0 0 . 7 .5001690
0 * 1 0 * 9 0*1911063
O * 3 0 * 1 0.3091234
0 • 3 0 * 3 0.8090394
0 3 0 • 5 0.9998273
0 • 3 0 :o 7 0.8090362
0 *3 0 * 9 0.3091207
0 * 5 0 * 1 -9.3840420-07
0 * 5 0 * 3 8*9682780-06
0 • 5 0 * 5 1.0081650-05
0 * 5 0 * 7 3*054505'-06
0 *5 0 * 9 -4.620023'-06
0o 7 0 • 1 -C.30'41281
0 * 7 0 • 3 -0.8090287
0 * 7 0 s 5 -0.9998:66
0 • 7 0 • 7 -C.80)90367
0 • 7 0 . 9 -0.3091323
0 * 9 0 * 1 -0.1911175
0 * 9 0 . 3 -0.5001757
0 * 9 0 5 -0.6181255
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COMPUTER OUTPUT 9.(DYNAMIC)

EIGENF.UNCTION=3

PATH- 7 "OMEGAM 47 ,98486

X y U(X,Y)

0 .1 0 .1 0.1;I1126

0 . 1 0 . 3 0.3091245

0 1 1 0 . 5 -9-6871101-07

0 .1 0 .7 -0.3091258

0 1 1 0 * 9 -0.1911120

0 ° 3 0 . 1 0.5001729

0 * 3 0 o 3 0o8090308

0 * 3 0 . 5 -2.2170282-06

0 .3 0 7 -0.8090366

0 .3 0 .9 -0.5001741

0 • 5 0 * 1 0.6181221

0 * 5 0 o 3 0.9998204

0 * 5 0 . 5 1.3432551-06

0 .5 0 .7 -0.9998225

0 .5 0 . 9 -0.6181232

0 e 7 0 . 1 C.5001751

0 ° 7 0 * 3 0°8090382

0 ° 7 0 . 5 5-3713871-06

0 * 7 0 . 7 -0.8090329

0 . 7 0 . 9 -0.5001737

0 .9 0 . 1 0.1911140

0 9 0 . 3 0.3091279

0 * 9 0 * 5 3.674680'-06
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COMPUTER OUTPUT 10.(GALERKIN)

VALUES OV C(U) ARE

Cl = 1.596382

C2 = 1.596392

C3 = -2.598899

x Y U(XlY)

0 • 1 0 1. 0.002375632

0 0 1 0 a 3 0.01059511

0 • 1 0 * 5 0.01862749

0 . 1 0 . 7 0,02069907

0 • 1 0 0 9 0.01103618

0 a 3 0 . 1 0.01059507

0 , 3 0 o 3 0a03192532

0 . 3 0 . 5 0.04658196

0 * 3 0 . 7 0.04633235

0 . 3 0 , 9 0.02294400

0 . 5 0 * 1 0.01862741

0 * 5 0 * 3 0.04658184
0 • 5 0 * 5 0.05916639

0 o 5 0 * 7 0.05281764

0 • 5 0 . 9 0.02397245

0 o 7 0 . 1 0.02069896

0 . 7 0 * 3 0.04633217

0 a 7 0 * 5 0.05281758

0 , 7 0 e 7 0.04240138

0 0 7 0 * 9 0.01732974
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COMPUTER PROGRAM 1.

RELAXATION METHOD APPLIED TO

VZ -X 2U9 EQ. (1.1)

.OW:¶NT FINDS rIGiNVALtII''S A~ND E-IGL--!V5CTORS BYV=L4ATIN 8S!2D ON K-4YL:iIGH'S FDPMULA ON ANY
POS OF DrMd N.
FOR MAL PARAMETEýRS:
0*4 QM-GA
C'42 'OM-GA SOHtApV;
0MC 2 LAST VALtis dF flM'GA SOIJAPED
ZNOR*4 MAX, NCIRM
Ni VAX. NtIMS7-R IF X P0SIT!0%JS

ol MAX. NUMBER c Y POSITIONS
Hi !" SH OF X V40T--±BLF
H2 ME7SH OFP Vt C f A. BLFN2 A-R~A OF Le.W':VP0SITliC)NS 09 Y
N3 ARRAY Oz~ U~t'R 0OSTTIONS OF Y
UtU1,Z UNKNJOWN EIrfW!lFIINCTl0NS

Rlt.L HsH3,H4; ,i
0M2:=5C00.PC;
NR:=O.O2

H:=H!1*H:

CKi Nj
R;¾,L ARPtvy X(o::N!);,

FOR I:=,. U '.,T TL N1 ý'j
POP J: =0 J', UT TL P~ 1 .

7,ND;
FO'R j:=0 tJA11T~' Ni-201 X( I) --H 1;

l IN 1 L PI DO' Y(I)='!'H');

!F L=1 THN

= b,% T : =r IJ AIT! L NI 1 Y'r

W )= (X (I)-Y.I! )'':.2 ) (V(J )-Y( J )2);

IF L=2 Tw,

=O)Q J:=rl O'NIL 01 1hJ

,j !9l ) : =Z ( j
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G1 TO 01

IF 13 THI!N

v~p 12:u lNTI L Ni D"l
FOR J: 8 UNTIL PI DO

CATiKF 690:=401:= l;0m2:=50CO. 01
G3J TO D;

C 0M q SNI GT P 5 AN D K;
FOiR 1:=') UNTIL Ni-i DO
FOR J:=N2(I) UJNTIL 43(I)-l D!)

p~:_-=P!'+I ((Z Q +' J) -Z ( I,)/H).r)H

ýND

02:=Pn/Kt:;0M:=SC)RT(lM?);
IF (0"2>-l.M02) OR. (N>40~) THnN

WRJT=0"NOT COQVm7?RGTMG");
WI T;ý("tIl=") ;W?!7TECNl(N) ;
WRITMitCMr2 AINC OM2 K"WIN(OO?;
GO TO R;

!rFt 1R M-If7 .:m:12)<4R THFN

W~.CtITR)L( 3);
W~.!T:~(' ) ;WR iT7 (II 1) ;WP TT':(" "If);

WFI T'F(It COMPUT"D OUTPUT i.(RYLaX:,TI3N)

F. IT 10 WR T-#$s)
WRIT!(tt PATH=",IN," 0M7GA=",qOM);

$1 U( XY)');

IC I:=l ST-,-2 U'ITI L Mli-1
F 1* j=1 STZ? lijt,'T! I12 !

",I9 DIV Ni ,"."tI RFM Ni,11 fig

ý-N D DTV.
I F (S 00M- '.'r,2)Q.46 1."7' (L<4) THT3N GO TO 8;
IF A4RS(i 42-t -J2)<, P A T H M r. T~ -0;
N:.=,'+1 ;
COIMM':NT G':T 117W Z;

FJ :=1 NTTL)+ UNi-IL Dfl l-

IF L>2 TwH1J~

POR 1 :=l 'ANITI L N11-1 01
1PJ:=1,'2(I)+l UN4TIL N3(!I-i Cr)

I - G1 .11
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(C,2 . I .,,"• =,)')G). I,.ICA.• T I ;j.• I :=! !."IT! L N-I - .1 0
FGR J: =N:2(:)+1 UNTIL N3Q )-i 00Z ( ,J) := Z ( I ,J )-CI-C2"U( I ,J )-C3*tU( 1 ,J) J

PP I:--,.. U•T.. Ni 00=O', J:=42(1) IJM 7TL N3 I) D1q,: G 1 11

"N. Z*N0',:=ZS;
•'. :=, 'ý T• •P 9

J =4 J N2(Z 1 111T! L N3 I1 D I Z(I ,JA :=Z IJ)/ZNORM;
Gfl TO * ;
R:: 'I•.
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COMPUTER PROGRAM 2.

RELAXATION METHOD APPLIED TO

74U -X'Ut EQ. (1-3)

Ce'M4"-MT C!NDS ýXGf"V&LUFS AND SIG"NV'CTOPS BY
P'LAXTTI(-N B~ASED) ON PA.YLIGH'S FOQMULA FOR
0 4{.)W ?U.

CORM'l PAAAM!.T' PS:
0t4 QM~Tr,
0M2 DMTGA SQUAR"-:)
040112 LA.ST VbLU-- Oc OMFGA SQtJAP7D
ZNO' M MAX,. NOPM
H M':SH SIZ=E ul X AND Y

P;UI#ZUNKNOWN EI?'?NCIJNCTIONS,OT7-NTIA L ': ý)i GY
K2 ~KINET!C EfN'ýQGY;

REAL ARRAY ZUU1(o::14,0::14);
REAL XF, Po5l sM2, nm.O2,"RA ,Z S,0oNZNORmoH *CAT *DOG oCAT1 sDOGI;
RýA ClC2,C3;

FSAL ARRAY (:l)
MEAL ARRAY X(O::10);
LOGICAL SWITCH,
RcAL OM0;
op:=70OO.0;
SW ITC H:=TK Ut'*
CAT :=CAT 1: =22600C

flM2 :=70)OOO.);
'ýPA2 =0 .)05 ;
F()R 1.=o UIJNT!L 10 00 X(1H:=Y(I):=I*-H;
r-r2R 1:=O 'JNTJ.L 14 DD
r-l J:=r, UNTIL 14 00 Z(Xjj):=U(IJj):=01(jJ):=0.O;

nr~-iIN ZN31Y4:=0.0;
FnP 1:=3 UNTTL 1' 'frl
FOR J:=3 UNTIL 11 DI

I t ZS>Vt0RM THtEN ZN0Rm:=ZS;':.ND:.
O~R I:=0 UNTIL 14 010

FOR J:=C) UNT-oL 14 00 Z(ItJ):=Z(IJ)/ZiNORM;
GO TO A;

' N'- NORMA;PoorC'-DURZ- PUNCT;
B'!G IN
!F t.=" TH-ti

p -'.IN L*:=2;
rOR 1:=b INT~IL 10 DO
r-OR J:=C) UNTIL 10 0-0
NIR'MA ;'ND;

I F L=2 THWN
0-GIN L=3 ;CAT:=< -- ;N; =1;0,42:=2000.O0;
VN1:=7000.0C
0r-l I-.=e IJAT!L 14 DO POR J:.=O UNTIL 14 CIO(~):ZI,)

FOR I:=o UNTIL 14 00 POP J:*=o UNTIL 14 009 MI oJJ:=O.0;
FOR li:= UNTIL 1ý DO
FOR J,:=O UNITIL 10 00

NOR V 'A; END;
IF L=~3 TH-VN

om:=700000;
FOR I:=0 UINTIL 14 D0 r-0R J*:=o UNTIL 14 00~ U1UI,JH*-Z(I*J)
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cOR I:*0 UNTIL 14 00 FOR J:.=0 UNTIL 14 00 Z(lqJ):=O*O;
POP 1:=O UNTI L 10 00
FOR J:=O UNTIL 10 DO

NOR MA;END;
END FUNCTj

IP SWITCH TH-.N 85GIN SWITCH:=FALS"-;1FUNCrT;!-NDn;
(IOMMENT GET PE AND K!-:,

FOP 1:=2 UNT!L 12 0O
FOR J.J:=2 UNTIL 12 00

OMO:=DP4;
0OM2: =PE /Ktl; OM: SQR T( OM 2)
IF (CM0%140) OR 01I>60 ) THINJ

e'-.GIN WRITT.i"NOT CINVARGING "P)
WRITE(" "t)*,WRpIT.'( W",J0PMO01OO'-i);

WRITE(Z(3,1 I),Z( 511)*Z(791) .Z(9,1 ).Z(1lt.) );
GO TO RlmhtD;

IF AtS(0M0-3H)<PRA THEN
SzGIN bJCOMTR0L() ;

WRITE(" COMPUTEiR OUTPUT 2.0#?
,o(RýL AXAT ION) , );

iNTFV~lD SIZE:=!1;
WRIT201 VIGF.NFUNCTI0NJ=l,L-1);WR1TTE( It)
INTFIltLDSI Zl:=2;
WRI TEE" PATH=419N,41 QN4GA±" 0M I;
WRITE(" 1K;RI0 y1)

FOR 1:=l STE-P 2 lUNTIL 9 0
F OR J:=l ST;IP 2 UNT!L 9 DO
93EGIN INTFIýL0SIZ_:':2*1

WRITý(11 1111 DIV 10111.119 R-"M 10,
"of 1Jt DIV 10,".'%1J Rý_m 10,Z(1+2tJ+2)H;

WRITE(" t)

IF L<4~ THEM! FUNCT -!LS,- GO TO R;
NNE

COIM'gMTlTý GET M--W Z;
FOR 1:=3 UNTIL 11 DD
~COR J:=3 UNTIL 11 00

FOR T:=2 UNTIL 12 Do

IF L>2 THIN'
9"GIN C:DG=r1:=O.O;
FOR I:=3 UNTIL 11 r--q
FOR J:=3 UNTIL 11 DO

C2:=D0.G/CtT;C3:D0CG1/CAT1;
FOR 1:=3 LUNT!L 11 DO
FOR J:=3 UNTIL 11 tDO
FOR 1:=2 UKITIL 12 D

87G1 N
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,IF ,L<5 THEN NOR.MA;

76



COMPUTER PF90GRAM 3.

GALEiUCINIS: METHOD APPLIED TO

VU -!2('x2+y2 _X'~y)j EQ. (1.5)

8FOIN
CC PENT SOLVES PARTIAL 10 FF5ANTIAL EQUATIONS OF
.TH'E FORM L(U,)=F BY GAL;:RKINIS M'-'THOD ON ANY DOMAIN.

FORMAL PAR AMETERS:
N NUMBER OF EQU4TIONS

M2 MAX* NUJMBER CF X POSITICNS
103 MAX, NUMBSP, OF Y POSITICINS
N2; ARRAY' OF LOWE-R Y POSI TIONS

N3 APRAY Or- UPPEP Y POSITIONS
F KMOWN FUNCTION:
U UNKNOWN FUNCTION
C(I) ý--STIMATlNG FU'JCTIONS
01(I). L(ý-STIMATING FUNCTIONS)
A(I) CO=F* OF E-STJM.6T1NGi FUNCTIONS;

R AL Hf
RCA~L H2.H3;
INTEGýER M2,,'.i3;

INTGSRN? #,P;
E.-loO0Olj1P.=oDEV. =1.0;
READ(UN,2t 13 #H2 9H3);

lHl:=H2i*H'3;
BEGIN
RcAL ARRAY X(O::M2);
REAL ARRAY Y(O: :M3h
RSAL ARRAY B(t::N~lt±'N.1);
Rr-AtL AR1RAY At 1:U:N); N3)
REAL ARRAY ODv1(1::Nt0::M.2,O::MS3)*;
INTE-GSR AR!ýAY N'2,N3(0::M2);
KRP 1:=O UNT I L 1.12 00 X( I):=I*kH?;
piOp I i UNTIL M3 DO Y ( I ) :=I IsH?
FOP I:=0 UNT IL M2 0 0 ,A 0 ON (N2 (I)
FO0R. 1:=O~ UNT IL M2 DO Rý-ADO N013(1));
F OP' 1 :10 UNTIL M2 00
FCR J:.=O UNTIL M3 DO10

ý'GIN

FOR L:=l UNTIL N 'ýO

f G1N4CMM=NT SD3LVL HV Q;'
PROC~iUPE WýRI T--R

B-IN WRITi--lSsINGULA;Gl);GQ TO 0;

BEGIN COMMNUNT G7ZT U(I.ýJ) AND A(I)*,

.wpITt-(d COM¶PUTER OUTPUT 3.(GALSRKIN)ll);
WRI T;'(" " );WRITE (' It );
WA I r,:: VALUFS OF C(I) ARE1");WRITE(" 11);

FCR !:=l UNTIL N DO
BýGIN

INTF-!aLDSIZE:=1;

rep J:=O UNTIL M3-1 CC,
BE" IN
FOR 1:=O UNTIL M2-1 0O

B EG IN D 0 G=0.C;V
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FOR 0:=1 UNTIL N DO DOG:=DOG+A(L)*D(LoI..Jl;

WRITE(" x yfi

WRIT fe1NbwlRhTE(H "
FOR1:~ STP 2 UNTIL 112-1 DO

FOP J:.=1 STtP 2 UNTIL M3-1 DO
BIEGIN INTF!SL0SIZ-,:=2;

WRITE(""91 DIV M2,'6 0"?! REM 142t
9' tol DIV M3*"sllJ REM M3.U(I.Ji);

WRITE("")
END:

GO TO Q;
END PERcORM;
PP.OCEDURS SWI TCH;
BEGIN CCMMýNT SOLVES FOR AUl) COEFF;

FOR 1.*=1 UNTIL Ml DO B(I9Ml+lJ:=C(I);
FOP K:=1 UNTIL Ml. DO

BEGIN IF K=Ml THEN GO TO P;
FOR 1:=K-l. UNTIL Ml 00

BEGIN IF A8S(l3(K,K))<A8S(P(I9K)) THEN
BEGIN R:=R+l;
FOR J:=i UNTIL Ni DO

END ;END;BEI
P:IF ABS(8(KoK))<F THEN WRITER. SLSEJ

BEGIN DEV:=DFVk B(KK);DOlM:.=(K IK);
FOR J:=1 UNTIL NI 90 8(K.J):=B(KvJ)/DOm;
FOR 1:=l UNTIL MI. co

BEGIN AMUL:=B(IK);
IF I=K TRH- ELSi

BEGIN
FOR J:=l UNTIL Ni DO

BEGIN 8(1 .J) :=9( I,J)-AMUL*B(K9J) ;
END;END; END; END;ENO;

PERO A N0 .M
END SNIUfCH;
CCMMPNT GUTSS=0 PUNCTIONS D(I) HERE;
FOP. J-= UNTIL M2 00
FC9 K:=N2(J) UNTIL N3(J) 0O

EFEGIN

FOP JK):=2(XJ-(J+i NTL N3'(J) DO K4:2)
COG=OG+ FjK:=*(( J .K:D 2 . Y( K) v*2-XJ)Y(

CCOrNSOV R INTG6L F* ADCD

FFOP K:=i UNTIL M2 DO
POP K:=K12(J)+l UNTL N3(K) Doo
COG: =DOG+ (F(JCK1i0(1JKJ,K)D(.,KHl);

IFO J:= THNTSWITCHO

END;

ENID ;F.ND;
Q:ND.
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COMPUTER PROGRAM 14.

RAYLEIGH-RITZ METHO0D APPLIED TO

V2U =2(X2+y2-X-y)s EQ. (1.1)

C~''T L'/~ oT~e ~)0 cN-:-KT!ýL 'ýQUAT!CNS BYV
RýYL'1ICH-~r.TZ M- H-l

cý 4JL -, V T s

N NIM ~ Q' 14T I flNS

OPIFCR L11A!T 01F XRo

NI? I~ 2f.DS N y 4 rl o
N2 3NW' Y CopyA( I) ' O - ST!'4,ATINr FUNCTIONS

INTG' 1- ," 1

RVAL .j.: (0 rM ,~.v~ 3

FR ý :' AJT~ L2 P "YX'

RO -- ~' A ~ ! Li An P R AYY!C (( I'-
q Iý A " .J L 4? F ýýi.'I k tD1tV2( 2 #C' 43;

FCR I:~i LJN*UL1 M2 Dnx

POD I =J) I~J )IN ,JL ) R; 4:, *12
Po I I UITI L 4 HD

0 CL , IJ) :~ L T , J) :D2(L, I tJ =0 :-0C

FOR J: =I 'JNT IL 14+ 00D 6.1 , J) ~~
B?GI7N

, n C? JC WJR 1T.;

WR I -' UNTI N isisfllc

W dRY T C, C"t It~" A( I T7 110TT If W , );t)

FOR I 1 U114T 1L N A

=1. UNIT IL N ID? X-G+A (L It, 0L t I, J
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-Nil
WR!T(E TSV) 0 'W"

WP IT' (of It ;W 1TTE ("

P L'I J:=.) STFP 10 UNTIL M3 00

WRIT'r(" II

G() to Q;
END PP'M
MIC'CLU" SWITCH;

8~INTtRNmI

FLIP K:=l t IIT IL MI ') 3

IF W,~ml TW'*N GC To P;
FOF~ !:=K+1 UJNT!L M! C)!

FO~R J:=l IRITIL 'qi r,0

P: IF &S(KV)JTHI.N WF1TR U~Siý

D .VK* = f" V :v r (,K,;
~'ýll J:=l JT!.i a'(KJ:KJ/r ;~CR 1:=! 'INTIL I D

1;' T=K TH..N -LS-
8:'-I N

P .3 R P
'7rD SUTTC.H

rN,[NTGUS5 -7 ý!JqCjrrl f(~ (I) Hla';-

'k -ý I ý.1)

Ol(2,J -=2- * X(J)-32. 2(()-k '92) Y(IK:-) y'KT )

0 1( 3 ,J K) (.x J )2L X ( J ) 3) Y (<) K Y (K ~4
52 ? Jh -(2 9 '< ') -3 -' Y(v ) <"2) (X (J V2-X( AV )

CrPM~"-'T SOLVT Crl TNT. GRPS 1,J:W;

r-ý J 1~G (l\I I M ? ) ( ~ J K ) - 4

01 I J:~ Y' T L -N V0
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FOR J:=1 UNTITL N DV~

Fol.' 9:=l 'PITIL M12 00O
FOR L:.=M2'2K)+l IJ1TIL N43(K) DO

SWI TCH;
2 ND'-*.N D;

E.ND.
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COMPUTER PROGRAM 5,

RAYLEIGH-RITZ METHOD APPLIED TO

V2 U .- _ 2 U, EQ. (1.1)

BEGIN
CCMMENT SOLVES EIGENVALUE PROBLEMS BY RAYLEIGH-RITZ

METHOD USING TRED2 AND TGL2 FROM NUMERISCHE
MATHEMATIK 11,PP. 181-195 AND PP. 293-306(1968) BY MARTIN
REINSCH,BOWDLER HILARYAND WILKINSON.

FORMAL PARAMETERS:
N NUMBER OF EIGENVALUES

AND THE NUMBER OF EQUATIONS USED
HX MESH OF X VARIABLE
HY MESH OF Y VARIABLE
NPX NUMBER OF X POSITIONS
NPY NUMBER OF Y POSITIONS
U(I) UNKNOWN EIGENFUNCTIONS

:C(I) ESTIMATING FUNCTIONS USED
R(1) COEF. OF ESTIMATING FUNCTIONS
D2(1) EIGENVALUES OF MATRIX A

II( EIGENVALUES OF MATRIX B
Z (I EIGENVECTORS OF MATRIX B
Z2(1) EIGENVEýTORS OF MATRIX E=T'*A*T
0(I) USED IN TRANSFORMATION C=T'*D;

INTEGER NXNYNNPX,NPY:
REAL HXHYEPSDOG;
LOGICAL T;
PROCEDURE TRED2(INTEGER VALUE N;REAL ARRAY DE(*If

REAL ARRAY AZ(*,*):REAL VALUE PU);
COMMENT REDUCES SYMMETRIC MATRIX TO TRIDIG. FORM USING

HOUSEHOLDERS REDUCTION.
FORMAL PARAMETERS:

N ORDER OF SYMMETRIC MATRIX A
D DIAGONAL OF RESULTS
E SUB-DIAGONAL OF RESULTS;

BEGIN
INTEGER I,J,K,L:
REAL F,G,H,HH,TOL;
TOL:=PU/EPSILON:
FOR I:=l UNTIL N 00
FOR J:=l UNTIL I DO Z(I,J):=A(I,J):
FOR I1:=N STEP -1 UNTIL 2 DO

BEGIN I:=I1:
L;=I-2 F:=Z(I,I-1):G:=O#OI
FOR K:=l UNTIL L DO G:=G+Z(I,K)*Z(I,K);
H:=G+F F;
IF G <= TOL THEN

BEGIN E(I)k=F;H:=O.O;GO TO SKIP;END:
L:=L+1:
G:=E(1):=IF F>= 0.0 THEN -SQRT(H) ELSE SQRT(H):
H:=H-F*G;Z(I,I-1):=F-G.F:=O.0;
FOR J:=1 UNTIL L DO

BEGIN
Z(J,I):=Z(ILJ)/HDOG:=G.O K ,FOR K:=l UNTIL J DO G:=G+Z(JK)*Z(IK)!
FOR K:=J+l UNTIL L DO G:=G+Z(K,J)*Z(IK);
E(J):=G/H:F:=F+G*Z(J,I):
END:

HH:=F/(H+H):
FOR J:=l UNTIL L DO

BEGINF:=Z(IJ);G:=E(J):=E(J)-HH*F;
FOR K:=I UNTIL J 0O
Z(JK):=Z(J,K)-F*E(K)-G*Z(IK)*,
END:

SKIP:D(1):=H:
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END;

FOR 1:=l UNTIL N DO
BEGIN Lt~I-ll
IF D(l) -= 0.0 THEN
FOR J:=l UNTIL L DO

BEGIN G:=0eQ;
FOR K:=I. UNTIL L DO G:=G+Z(I#K)*Z(Kj):
FOR K:=l UNTIL L DO Z(KtJ):=Z(KtJ)-G*Z(Koll;
END;

FOR J?=ýl UNTIL L DO Z(IsJ)t=Z(JvI):=0.O;
END;

END TRED21
PROCEDURE TQL2(INTEGER VALUE NIREAL ARRAY DE(*);

REAL ARRAY Z(*t*);LOGICAL RESULT FAIL)!
COMMENT FINDS ETGENVALUES AND EIGENVECTORS.

FORMAL PARAMETERS:
N ORDER TRIDIAGONAL MATRIX
0 DIAGONAL ELEMENTS
E SUB-DIAGONAL ELEMENTS
Z MATRIX OF HOUSEHOLDER TRANSFORMArIONt

BEGIN
I NT EGRCIJaKLM
REAL RCF.,
FAIL:-FALsE: I

FOR 1*:=2 UNTIL N DO00 -),~()

FOR Ll%=l UNTIL N DO
BEGIN L:=Ll:J:=Ot
H:=EPSILON*(ABS(D(L))+ABS(E(tl)W:
IF B<H THEN 8:=H;
COMMENT LOOK FOR SMA~LL SUB-DIAGONAL ELEMENT;,
FOR Ml:.=L UNTIL N 00

BEGIN M:=Ml;
IF ABS(E(M))<=B THEN GO TO CDNT*;END;i

CONTIF M=L THEN GO TO ROOT;
NEXTIT:IF J=30 THEN

BEGIN FAIL:=TRUE*:GO TO FIN; END:.

P:=(D( L+l)-D(I) )/ (2**E(L))
R:=SQRT(P*'*2+1.0.) 1
H:=D(L)-E(L)/CIý P<0.0 THEN P-R ELSE P+R)*;
FOR 1:=L UNTIL N 00 D(I)*.=D(I)-H%

COMMENT OL TRANSFORM4ATION;

FOR 1:=M-1 STEP -1 UNTIL L DO
BEGIN
G:;:C*E(I) :H:=C*P4
IF ABS(P) >= ABS(E(I)) THEN

BEGIN
C:=E( 1)/P :R:=SORT (C**24IoO):.

END ELSE
BEG IN

E( 1+1) :=S*E( I)*R:S: =l.C/R!C:C/RI
END:

COMMENT FORM VECTOR;
FOR K:=l UNTIL N 0O

BEGIN
H:=Z(KI+fl:Z(KI+lU:=S*Z(KtI)4C*H:.
Z(K, ) :=C*Z(K I )-S*H:.

END; END!
E() : S*P*:0 (1):CP
IF ABS(E(L)) > B THEN GO TO NEXTITZ

ROOT:O(L):'=O(Ll+F;
END:

COMMENT ORDER EIGENVALUES AND EIGENVECTORSi



EORijN UNTIL N DOK2uI2P*mD(I)1
FOR ~ 2TI+1 UNTIL N DO
AF J1 < PTHEN

BEGIN K~uJ1PiuD(J)lEND;
IF K %m, I THEN

OR 33.1 UNTIL N DO
BEGIN P:-Z(JI) ;Z(JI):aZ(JKflZ(JK):=P:END:

FIN:NQD(.N.N:

REAL ARRAY Y(O::NPV); 1:N)
REAL ARRAY CC1, C21: :NO1::NPX),ONP)

REAL ARRAY Zf,ZM(::N,l::N);
PROCEDURE FCN;
COMMENT COMPUTES FUNCTIONS AND MATRICES A AND B;
BEGIN
X(O):=Y(O) :=O0O;
FOR 1::=1 UNTIL NPX DO Xf2):=I*HX:
FOR I:=1. UNTIL NPY DO Y(I):=I*HY;
FOR I:=1 UNTIL N DO
FOR J:=l UNTIL N DO A(IJ):=B(IJ):=O.O:
FOR I:=0 UNTIL NPX DO
FOR J:=O UNTIL NPY'DO

BEGIN
C 1I,~J):=(X(I)-X(I)**2)*(Y(J)-Y(J)**2):.
C 2,IJ):=(O.5-X( I))*C(1.1,J):
C(3i J) ( 0 !i-y( ) )*c '1t 1v3) ;

CEND: i:(1-2*( )(()Y()*)
FOR2 K:= UNTIL N DO*(.-3*XI+3*XI**)

FOR J:=1 UNTIL NY DO
BEGIN

A(KL):=A(KL)+Cl(KI ,J)*C1 (LIJ)*HX*HY

END:.
END:

END FCN:
PROCEDURE WRITER:
COMMENT WRITES ALL DATA;
BEGIN
FOR I:=1 UNTIL N DO
FOR J:mi UNTIL I DO

BEGIN DOG:nZ1( 1J),) Zl(IJ):=Zl(JI):Zl(Ji):aCOG; END;
FOR y;w UNTIL N DOFOR sal NTIL N DO D(LtI):Z2(IL);
FOR Viol UNTIL N Onl
FOR 1So1 UNTIL N 00O

BEGIN DOG: neo:
FR pimlUUIL N DO DOGI'D0G+Z1(IJ)*D(LJ):.

ENIS
FOR Isal UNTIL N DO



BEGIN
FOR J:=O UNTIL NPX DO
FOR L:=O UNTIL NPY DOU ~ ~~BEGIN U(1,JL:OoPOR K: I UNTIL N 00 Ul(IvJ,L):=UutJqL)+R(IK)*

END;ENDK:tL
FOR K:=l UNTrIL N DO

BEGIN IOCONTROL(3);
WRITE(' ") *WRI TE( 11'1) :WRI TE (1 01)WRITE(:: COMPUTER OUTPUT So(RAYLEIGH)");
WRITE(" EIGENFUNCTION=UK,4 OMEGA~", SQRT(D2(K)))
WRITE("~ THE VALUES OF CCI)");WRI TE(" 40) :WRIJTE(, 11');
FOR L:=l UNTIL N DO

BEGIN INTFIELDSIZE:t-l;
WRI TE( " C" ,L , "~" ,R (K,L))t

WRITE(" x U(XY)#');WRITE0 1" ) : RITE(I " 1);FOR J:.=o STEP NX UNTIL NPX 00POR L:=0 STEP NY UNTIL NPY DO
BEGIN INTPIELDSIZE:=2t
WRITE(" t~J DIV NPX,"*",J REM NPXt,"L DIV NPYtl,"",L REM NPYtU(KtJvLl);
WRITE(" ");

ENDJ:ENDI:
GO TO Q;

END WRITER:
FCN:
TREO2C NDl, ElBZ1,E PS);rQL2(NjolEl ,Zl, T):IF T THEN BEGIN WRITE(C"FAIL=11") ;GO TO Q;END ELSEBEGIN

FOR 1:=l UNTIL N 00 Dl(Ik:=SQRT(DlCI))l
FOR 1:=l UNTIL N DOFOR J:=l UNTIL N DO ZlCJsIk.=Z1(Jtl)Io1(I):
END,,

FOR 1:=l UNTIL N DO
FOR K:=l UNTIL N 0O

BEGIN PCItK):=%0d.0FOR J:=l UNTIL N DO P(I,K):=P(IK)+ACIJ)*Zl(JsK);
END;

FOR 1:=l UNTIL N 0OFOR J:=l UNTIL I D0BEGIN DOG:=ZlCI,J) :Zl(ljn:=Zl(jI);ZlcjI):=DoG':END:
FOR 1:=l UNTIL N DO
FOR K:=l UNTIL N 00

BEGIN E(ItK):=n.O:FOR J:=l UNTIL N 0O ECIK):=E(ItK)+ZlCIpj)*P(J,K):
END;

TRE02(NtO2tE2,E,Z2,EPS):
TQL 2(N ,D2iE2 Z2,T):IF T THEN BE61N WRITEC"FAIL=211);GO TO Q;END;WRI TER;
END;
S:GO TO START:

85



COMPUTER PROGRAM 6.

DYNAMIC PROGRAMMING APPLIED TO

(1) V2U -2(xl+y 2-X-Y) EQ. (1.5)

(2) V4U =X 1U 'EQ. (1.3)
BEGIN
CCMIVENT SOLVES PARTIAL DIFFERENT~t.l £VUATIONS AND
FIG'-NVALIJF PROOLt:MS 3.1- A RECTANGLES BY DYNAMIC
PROGRAMMING AND STODOLAsS M'-THOO.

FORMAL PARAMSTERS:
am OMEGA
0M2 OMEGA SQUARED
N NUMBER OF X POSITIONS
M NUMRCR OF Y P~l)SITIONS
KI COEFF IF NED;-D
vi ORDER OF THE 6PEýRATOR

V1=0 FIRST ORDER EIGEMVALUS. PRB
V1=2 S5CONO ORDER --IGENVALUý PRB

11 TYPE OF PROGRAf" RUN
T1=O FIRST ORDER
T1=2 S2CgNb ORDE.R
T1=50 EiIG-NVALO'

P( 1) SECOND NORMAL DFF I AT! VE ON BDRY
El FUNCTION TO SATISFY
U UNI<NOWIN FUNCTIO~N
Ci NUMBER OF SIG~tNVALUE:S;

REAL KE4,PE;
REAL Ev-, RA,,OMtOM2 ,0M02,H ,Kl;
REAL CA'TilCAT2*Cl*C2sC3%DOGI.*D0G2;
REAL ZNOPRMAZS;

INT!FGr-R 01iO21.
LOGICAL TOGGLE;:
REAL ZNO.R1,i1

TOGG'LE :=TRU,.;
02: =I*
CATI:IC6T2:=5OOO.0;
MI:=2*M-2;
0M2:=1000.O;
Ni : O;
ERA,-=0*01;
ERA:.O .002;

BEGIN
REAL ARRAY Xl(0::N);
RF.AL ARRAY Y! (0: :M) ;
R5AL ARRAY U5(0:,.N,O::'M);
RFAL ARRAY Ul. 1J2 (r: :49 0::.
REA~L ARRAY U3 (0: N, *:: V)I
REAL ARRAY C 1 BiPl( 0* *N,0::MI
REAL ARRAY Z(O *: N+4 6O.:-M+4);
RýAL ARRAY ~(:~,:t)
REAL ARRAY I1,Q(i::M-1,I::M-1);

REAL ARRAY Ai:~:M1:)
RF.6L ARR AY (:NOMO:i)
RZAL ARRAY CAT (0::M1
REAL ARRAY C.(O::-NO:M)*;
RF.AL ARR&YPiF3O:I
R5AL ARRAY P2,IP4((O::N)*
FOR 1:=O UNTIL M DO Rn ADON(U(0,I))
FOR 1:=0 UNTIL N DO RýýADON(U(1,O));
FOR I:=0 U NTv L M DO0Rý 0O m'('J (IN ,I ));
FCR 1:=O UNTiL N CDl RE-AOTIJ(IW.01-) )
FOR I:=O UNTIL N 0 Cl XI(Il)=I"H;,
FOP J*=O UNTI L M (10 YI(J)*;=J*H;
IF (Tl>O) A~ND (Vl=2) THEN
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FOR:noUNTIL M DO

FOR, :2=0UNTIL M DO
P31! 1 l( :aU;
~FOR I 2=0 UNTIL N DO
P2(I) :=O.O;
FOR I.-2PUNTIL N DO
P4(I):=-2(l);
END;

FI1R I:=0 UNTIL N DO
FOR J:=0 UNTIL M 00OUi(IJ):=U2(1,J):=U3(IJ):=U5(1,Jfl=O.Q;

BEGIN
PROCEDURS WRITER;
BEGIN WRITEP"SINGULAR");
GO TO W;
END WR!TzRev
PROCSOUR~ WRITI.;
BEGIN
IOCCNTPOL(3);
WRITE(" ");WRITE(ft ");WRITIE(" )
WRITE(1" COMPUTER 'OUTPUT 19(DYNAMIC) 1);
WRITS (" ");WRITE(" 11);WRITE(1 11);
INTFIELDSIZE:=l; EGNUCIN"Q-)WIE 1  1
WRITE(" EGNUCIN10-);RT(@0)
INTFIE-LDSI ZE :=2;
WRITE.(" PATH="9Nlq" OME-"GA=" 9 M);
WRITE(" ");WRITE(" 1");
WRI TE (01 X V

WRITE(" ");WRITE(" 9)

FOR 1:=l STEP 2 UNTIL N-i DO
FOR J:=t STEP 2 UNTIL M-1 DO

BEGIN INTFIELDSIZI-:=2;
WRITE($' 110 DIV N,",.",, Q-EM Not

J DIV M,"l.",1J REM MU(IJ));
WRI TEC ();
END;

IF Q2=Q1+1 TH7N :lJ TO W ELSE STARP;
END WPITI;
PROCEDUPS STARP;
BEGIN
IF T1=50 THEN

BEGIN
IF 02=1 'IHEN

BFGIN Q2:=2;
FOR I:=i UNTIL N-i DO
POR J:=i UNTIL M-1 00

GO TO Z5;
E ND;

IF 02=2 THEN
08-GIN
FOR I:=l UNTIL N-i Don
FOR J:=i UNTIL M-1 DO

BEGIN
U2(I ,J) :=U(IpJ);

END;
CAT 1: =K ; 02:=;N: =1; DM2: =5000. 0;
GO TO Z5;
END;

IF 92=3 THEN
88~GIN-1D
F R! :mi UNTIL. N-iD
FOR J:ui UNTIL M-1 DO

BZ~GIN
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CAT21xK-,%02:= 4;OM2:w5000s0;
GO TO Z5;

Z5 ND;SNt!;

IF QZ>2 THFN GO TO Z69
COMM-NT PUT FUNCTION io SAT. HERE;
I F Tf4-50~ THFM

PIG 1N
FOR I:0o UNTIL N DO

FOR J:=O UNTIL M DO

END;END;
FOR 1:=l UNTIL M-1 DO
FOR J:=i UNTIL M-1 DO

IF 1=J THPN Ii(IJ):=i.O ELSE I1(I,J):=O.0;

IF =J TH!M Q(I,J:K*3O
QFIFABS)(I=-J)=j THEN :Q=(IsJ):=;-Ki;
END;

FOR. J:=i UNTIL N 00
FOR 1:=l UNTIL M-1 DO

IFJ f! THN R(J I ):=-2,O*K1*U(J,O);
IF-I=!4-1 THEN R(JI):=-2.O*Ki*U(JM);
END;

FOR 1:=l UNTIL M-1 Do
FOR J:=i UNTIL MI-1 D0

A(N I J) :=I 1(1,J) ;
FOR 1:=l UNTILl M-1 DO

SWITCH
Z6:IF L2=2 THEN SWITCH ELSE OOP;,
END STARP;
PPOCTDURt OOP;
CCMMP-NT NrRMALIZEES U(X,V)O;
BEGIN
ZNORM: =0.0;
FOR 1:=f) UNT!L N D0
FOP J:=O UNTIL MI DO

9FEGIN
ZS:=ABS(U(TJ) );
IF ZS>ZNORM THcN ZNORM:=ZS;
END;

FOR 1:=o UNTIL N D)1
FOR J*:=0 UNTIL M DO (J(IJ):=IJ(IJ)/ZNORM;
OM02:=OM2;
DM2 :=l .0/ZMOP-M;
OM:-=S0RT(0t42);
IF N1>30 TH7N

BEGIN
WRITh("TOO MANY STEPS");
GC) TO W;

ZNORMl:-O0
FOR I:=i UIL N-i DO
FOR J:=1 UNTIL MI-1 DO)

OEGIM
ZS:mABS(U(I J)-U5 (It,J))

I S>ZNCJRM1 THEN ZNORN'I:mZS;
IF ZNCRM1<211A THFN

SEWI~ KFuO. 0 ;
FOR I~n 3.4 1UTL NJ f~
FOP 45.1 UNTIL M DO KE:xKE+(U(IJ)*H)**2;

Ni: s NI+ I
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FOR I:=0 UNTIL N DO
FOR J:=O UNTIL MI 0O

BEGIN

IF V1=2 THSN 5l(IlJ):.=U(IJ);

FIGURE;
END 'M2OPG;S
PPOCSDUPFGU;
BEGINCOMMENT SOLV5S FOR. U AND B-,
IF (T1=O) OR ((Tiý0) AND MV=0)) THEN

BE5G I N
FOR L:=N STEZP -1 UNTIL 2 DO
FOR 1:=l UNTIL MI-i DO

BEGIN CAT(11z=0.O;
FOR J:=1 UNTIL M-2. DO

8(L-i, ) :=CAT(1
END;

FOR 1:=l UNTIL N-i DO
BEGIN
FOR J:=1 UNTIL MI-1 DO

MEGIN CAT(J) :=O.O;
FOR L*:=1 UNTIL MI-1 00

*(U( I-i L)-(B(I+iL)+R( IL)+C(IL) )/2.O);
U(I*J):=CI1 T(J)V"ND.F-ND;END ELSE

IF TOGGLE- THrN
BEGIN

* Ul(N,Oh=-P3(0)-P2(fA);*

FOR 1:=l UNTILL M-1 00
BSGIN

FNDI
r-OR I'.=i UNTIL N-i. DO

t-ND *
POP 1:=i1 UNTI L M,-1 0O 61(N,14) :=-2.* Ul(IN II
FOR J:=2 UN1TIL N DO
FOR 1 :=!1. aNTI L M-i DO

IrF 1=1 TH3N Rl(JiI):=-2.*Ul(J,O);
IF 1=m-i tHEN RI(JtI) :=-2.,;Ui(Jim);

TOGGLE: =FALSE;
FND;

cOR L:=N STEP -1 UNTIL 2 DO
FOR 1:=l UINTIL MI-1 Cf

SFGIN CATMI:=0.O;
F:OR J :=i1 UNIT IL M-Ii DO
81lL-i. I) :=CAT( 1
XND;

FOR I:=l UJNTIL N-I 00
OcGIN
FOR J:=1 UNTIL MI-i DO

BFGIN CAT(j):=11.;
FOR L : =1 UN4TITL 'A- I ')
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FOR ?ND;SNDI
FOR m0. UNTIL N DOFR J:=O UNTIL M DO CI(IJ):u2.*H*H*Yi(,Jflt
FOR L :.N STFP -1 UNTIL 2 00
FO I:=I. UNTIL M-1 DO

a GIN CAT(I:=O.O;
*1 UNTIL M-1 DO

BIL-1,I1):-CAT (I;

FOR 1721 UNTIL N-1 DO
B8GIN
FOR. J:=i UNTIL M-1 0O

BEGIN CAT(J):=O.O;
FORRL:=l UNTIL M-1 DC
CAT(J) :=CAT(J )+D( I+1,JoL)
*(U(-1,L-(B(44 )+R(IL).CI(IvL))/2.);
U( ,9J) :=C AT( i

EN C cND END;
IF 0M> _THSN

BEGIN
Cl: =DOG1: =DOG2:=O.O;
FOR 1:=l UNTIL N-1 00O
FOR. J:=i UNTIL M-1 DO Ci:=Cl+U(I.J)*H*H;.
FOR 1:=l UNTIL N-1 DO
FOR J:=i UNTIL M-1 Do U(Ij):=U(IJ)-Ci;
FOR I:=i UNTIL N-1;00
FOR J:=i UNTIL M-1 DO

BEGIN
OOGI:=DOGi+U(IJ)*UJ2(I,oJ)*'H*H;
DOG2:=DOG2+U(I,J);*U3U1,J)*H'*H;
E ND ;

C2:=DOGIICATi ;C3: =DOG2/CAT2;
FOP. I :=l UNTI L N-i DO
FOR J:=l UNTIL M-I DO'
U(I,J):=U(IJ)-C2*U2(I,J)-C3*U3(IIJ);
E:ND ;I

IF Ti=50 THEN DOP;
IOCCNTROL(3);

WP!T~tv" COMPUTER rlUTPUT 6, (DYNAMIC),);

WRITE( x Y

FOR 1:=l STeP 2 UNTIL N-1. 0O
cOR J:=i STFP 2 UNTIL M-1 CO

BeGIN INlTFIa--DSIZE_':=2;
W R I TE(1 #11 DIV Ni"'."91 REM No"

J DIV m ,".",ij RE=m MltI(I,Jfl;
WRI T 11 11);
TND;

GO Tof -,1
END FIGUJrl*
PROCEEDUR11W ITCH;
BEG IN
INTEG":P L K;

FOR L= STED -i UNT IL 2 DO
BSGIN

FOR :=iUNTIL M-1. D0
FOP Jo.'i UNTIL M-1 DO)

FOR !w.1 UNTIL 1- DO
FOR J:cI UNTIL Mil DO

0(1,1 J+14-i1:2 i(16J);
COR KPm NTI M-1 0

IF K=M-i THSPI C-f TO P.
COR I:',K.1 UNTIL M-1iý

BEGIN
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IF ABS(D(LKK <ABS(D(L, IvKU THEN
BE~GIN
FOR J:ý=l UNTIL 2*M-2 DO

85GIN

NI .K*J): =T;

P:FABS(D(L#KtK)I<'F T[4EWRITE.P EELSE
BFGIN

DM=0 ( 1,K, Kf
*FOR J:=l UNTIL 2*M-2 DO D(L,K.J):=D(LsK9J)/00M;

FOR I:tl UNTIL m-1 DO
BEGIN
AMUL:=O(Li ,K);
IF I=K. THN ELSE

FOR J'.=l UNTIL 20M-~2 DO
OF(rIN
O(L,IJ):=O(L,I,J)-AMUL*.D(LK,J);

POP, I:=1 'UNTIL M-1 0O
FOR J:=l I.JNTrL 4-1 00

riOR Y:= JNTIL M-1 rDO
rOP, J*t=l UNTIL M-1 PDO

IF NO ;
'FT1=50 THEN DOP ELS#E FIGUR2;

END SWITCH;
STAPP;

W:GC TO X:
Z:END,
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COMPUTER PROGRAM 7.

DYNAMIC PROGRAMMING APPLIED TO

(1) 7 2U a _X2 U EQ. (1.1)

(2) V'U -8.0 EQ. (1.7)

~MMENT SOLVES PACTIAL O!FPPR7-hTIAL cQUATIONS AND
J IGENVALUE PROBLE.MS ON A P.ECTANGLF B"Y DYNAMIC

ROGRAMMING AND STODOLAIS METHOD*
FORMAL PARAMETERS:
CM OMEGA
CM2 OMEGA SQUARED
N NUMBER OF X POSITIONIS
t4 NUMBER OF Y POSITIONS
KI COE--F IF !h.EED~rn
VI ORDER OF THE ODFRATOR

V1=0 FIRST ORDýR BIG=NVALUI PP.8
V1=2 SECOND ORr.ER SIGENVALUE PRB

Ti TYPS OF PPO"ZRAM RUN
T1=O FIRST ORDiP
T1=2 SECOND ORDER
T1=50 '-IG2:NVALU7-

PUl) SECOND NORMAL flERIVATIVE ON BDRY
El FUJNCTION TO SATISF-Y
U UNKNOWN FUNCTIOM?
01 NUMBFR OF EIG'ZiNVALUESS

RgAL KE U.0
REAL E ,.RAOM,C1M24M02,HK1*
RIEAL CAT1,CAT2,ClC2,C'3,DOýl',DOG2;
REAL ZNORM,ZS;
I NT EGE,-R NMqN1,STlV1,M1;
I NT~rr-R 01 02;
LOGICAL TRIGL;
REAL ZNORm1;

TOGGL,':=TRUz;

CAT 1: =CAT := 5 000. 0;
M 1: = 21-m-2;
CM2':=1 000.0;
Nl:=O;
'SRA:=0.03;
EPP :=c 00"2;
E:=0.060001;
8 G I N
RFAL ARP4Y Xl (0: :N);
RPAL ARPAY Y1 (0::M);
RFAL ARRAY U5 (0::~C:

R!: bL ARcRAY U J (C'::N+ V:);
RCIL AQRAY U3 ~(l0: : N, ::MV) I
Rý'AL A RD AY "1 9 19-l(::I
RcAL ARRAY AW0:N,1j: :M+l 4);

RFAL ARRAY 11 (l:'MC:10:~t~

AZAL ARPAY CAT(0: :M);
RcAL ARRA~Y C(O::N 0O M);
PR `ýL AROAY PI,9P3 (6::I)
PFAt. ARRNY P 2 ,P4(0: :-N);
F(dR 1:=0 UNTIL M 00 R::AD0Nl(U(0,I));
FCIP I:'Oa( UNT!L N DC) rl0AD ON(U (1,Q0 1
~OO I:=01 "IJT! L M4 DO eO(t',I;

;C.0 1*-n0 IJNT 1L N 00R : DC (J
OR 14.10 INTI L N4 r~ (IXf II w!
FOR J:iO UNIT!L MA CO Yl lJ )at
IF (T00) 1 AN' (Vlz2) TH2EN
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UNTXI DO

FOR13. UN TILM DO

FO I2:2,UNTILN DO
P2(1 IluZ. *Xi( I kXl(I)**2);
FO I U= UTIL N DO
14&1):,-P2( 1);

FOR S;. UNT!L N DO
FOR J:.O8 UNTIL M 00 U1(IJ):=U2(I,Jh:=U3(IJ):=U5(I.J):=O.C;

BEG! N
PROCEDURE WRITER;
BEGIN WrRITEC"SINGULAR"I);
GO 10 We
END WRIfER;
PROCEDURE WRIT1;
BEGIN
IOCONTROL( 3);,
WRITE(U ");WRITE(" ");WRITE(" )
WRI TE(" COMPUTER OUTPUT 7.(0,YNAmIC)")l;

WRITE(" EIGE-NFUNCTION=",Q2-1);WRITE('I ");
INTFIELDSIZE:=2; PT=,1" OEA"0)
WRI Tr-(11PT=09 OEA"q"
WPITVI" ");WRITE(It ");
WPITS(" X V

WRITE(" ;WfE ")
FOR I:=l STEP 2 UNTIL N-1 CO
FOR J:=1 STEP 2 UNTIL M-1 0O

8BEGIN INTFIZ-LDSIZ.E:=2;
WRITEC" 1,1 DIV N19'.",! REM N9,1

J DIV M,"",ttj REM M,'J(I,J));
WRITE("")

IF 02=01+1 THEN GO TO W ELSE STARO;
END WRITI;
PROCzDURS STARP;
BEGIN
IF T1=50 TH5M

BEG IN
IF 02=1 THFN

FVGIN Q2:=2;
FOR 1:=l UNTIL N-1. DO
FOR J:=1 UNTIL M-1 n)o

.IF 02=2 THEN
PSGIN
FOR 1:=l UNTIL N-i 00
FOR J:=l UNTIL Y-1 DO0

BEG I
U51U2 ( tI):=U( IvJ);
U(I j) :="'0,1

U( I,):=x!~'i~(.X(I)(5X()*1J*l~1J

CAT1:=Ký;Q2:=3;N1 :=1;0M2:=50009o;
GO TO Z5;
END;

IF Q2w3 THIN

F6R I:u m'JNTIL N-1 DO
FOR JnUNTIL M-1 DO
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END;
CAT2:=KýE;Q2:-=4;0M2:=5000. 0;
GO TO Z5;

END;E ND;
Z5..
IF 02>2 THIN GO TO Z6*
COMM=NT PUT FUNCTION tO SAT. HERE;
IF T!,=50 THEN

OýGIN
FOR I .=0 UNTIL N DO

FOR J:=-O UNTIL M 00
BEGIN

Mt):=2* ~*H.E(,)
END; END;

FOR ]:=l UNTIL M-1 DO
FOR J:=l UNTIL M-1 DO

9 2(1 1IN
IF I=J THE-N li(IJ):'1*O "-LSE Ii(IJ):=O.O;
0(1.j ):=O.O;
IF I=J THrEN Q(!,J):=KI*3.t)'
IF ABS(!-J)=l TH.:N Q(t,J):=-WKJ.;
SND;

FOR J:.-I UNTIL N 0O
FOR 1I:=i UNTIL M-1 DO

9EGIN

IF -1 TH'N,,R(JlI):.=-2.O*,Ki:-U(J 0);
IF I=M-i THEN P JtI):=-2.o~Ki~lJJM);
M)D;

FOR 1:=1. UNTIL M-1 'Dil
FOR J:=l UNTIL M-i 0O

FOR 1:=l UNTIL M-1 00

SWI TCH
Z6.15 L2=2 THj-N SWITCH --LST: DOP;
VID STARP*;
PP.OC=DUR1 D'POP;
(-CCMM!'NT NIORMALIZ=-c J(XV);
BtGIN

FOR I:=O LINTTL N DO
FOO j:=O UNTIL M M

BE~GIN

IF ZS>ZN0!-Z- TH2N ZNORNI:-=ZS;

FOR I:=0 UNTIL N 0O
FOR J:=O UNTIL Mi 0O U(ltJ):-=IJ(I.*J)/ZN0RM;
OM02: =OM2*:
CM2 :=1 .O/ZN2'-13r';
OM,:=SQPT(OM "2);
IF N1>30 TH:NJ

.E G I N
WRITrE("TOfl MANY ST7EPS");
GO TO W;

FOR !:=l LINTIL N-1 00
FOP J:=1 UNTIL Mi-1 DI

QSGIN
ZS:=A3S([U(I*J)-U5(IJ));
IF ZS>ZNDP-,4i THEN ZNOkmi:.=ZS;
tND;

IF ZNORMI<'!RA THEN
P3'GIN K:::=0*O;
FOR I:=! UNTIL N rýQ
FOR J:=i UNTIL M DO KH:*=K2+(U(ItJ)*!H)*-92;
WRY TI;

Ni: =Nl+i;
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FOR I?~ *.=0NTI L N DO
FOR J:-O UNTIL M DO

OF-GIN

IF V1=2 TH!EN WiAI J ):' I.=( ItJ)
* ~C(I ,J): :2.*H ( 1 ,1j);

EAD;
FIGURE;
FN0 DoP;
PROCýDUR-- FIGURE;
BEGIN
COMMENT SOLVES FOP 13 ANf) A;
I F MT=O ) OR ( (Tl=5O ) ký0NO(V=O) THEM

9FGIN
FOR L!.=N STE-P -1 UNTIL 2 DO
FOR ]:=! UNTIL M-1 DO

BEGIN CAT (I) :=O.(';
FOP J:=1 UNT'L 4-1 DO

FOR 1:=l UNTIL N-i DO
BEGIN
FOR J:=l UNTIL M-1 00

BEG,';IN CAT(Jfl:O.O
FOP L:.=l UMTIL -I DO

CAT(J):::CAT(J)+D(1+1,J,L)

SNOIENO;2ND ELSE3
qFG N

IF TOGGLE THL-1

* U1(OO):=-P1AO)-P2(0);

Ul (0,oM) : =-P (M) +P4 (0*1
Ul(NT) : =P4(N) +03 ( M);

* FOR .:=! UNTIL M-1 0O

U I N tI P =3( 1 )+(U (Nt I+ 1)2. ̀0 (M f +U(, I -I /(H-,H);

rFOP I:=i UNTIL N-1 CO

END;
FOp f'.=! UNTIL M--I 00 el(Ni):.-2.*-U1(NI);
FOR J:=2. UNTIL N kl
FCR 1:=l UNTIL M-1 ri0

IF 1=1 THFN ~(,)~2'U(,)
IF I=Ni-1 THEN PRi(JI):=-2*)dJI(JtM);

TOGGLE: =FAL
ENV;

FOP L:=N STEP -1 UNTIL 2 DO
FOR 1!:ýi UNTIL M-1 00

ýbk J:=l UNTIL M-i DO

ENDI

FOPR 1:= UNTIL N-1 00
BEGIN CTJ:OO
FOR L:: i UNTL M-1 .00

CAT(J):=CtkT(J )+0(I~lJL)

Uli(IJ ) :=CtT( ji ;
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FOR ,;-0 U NIO 00
FOR J:=O UNTIL Mi 00 C(IQ9Jl:=2.*H*H*Ut(IvJ);
FOR L:uzN STEP -1. UNTIL 2 00
FOR I!1:lUTLM10

BEGIN CAT(!):,-O.O0;
t OR J:=t UNIV- DO

E ND*
FOR 1=UNTIL N-1. 0O

BEGIN
FOR J : -1 UNITIL M-1 00

BEGIN CAT(J):=OeO*
FOR L:4l UNTIL Ni-f DO

*(UfI-1.L )-Q(B(I+lL)+R( IL+CI C 1,11)/2. I
UCI J):=CAT(J) ;

EN 0 ENDA;E ND
IF C2>~ THEN

BEGIN
C1:=DOGl:=D0G2: =O.0;
FOR 1:=l UNTIL N-i DOl
FOR J:=1 UNTIL Mi-1 DO Cl:=Cl+UCIJ)*H*H;
FOR 1:=l UNTIL N-1 DO
FOR J:=l UNTIL Mi-i 00 UWtJ):.=U(ItJ)-C1;
FOR 1:=l UMTI L N-1 DO
FOR J:=i UNTIL M-1 LVO

i3EG IN
bOei:*=DflG1+Ull J)A,,U2(l JA*H*H;
00G2:.=DOG2+U( I,J[t.U3(hJ )4,H4.H;
END;

C2:=DOGI./CATl;C3: =DCG2/CAT2;
FOR 1:--l UNTIL N-i 00

* ~FOPR J:=l UNTIL Mi-1 nr

EýND;
IF Til5O THEýN DON';

s IOCt.NTROL(3);
WJRITT0" "k)WPITE('l 11);VRIT:E(" If).

wp irCOMPIATEP OUTPUT 8. (CYNAMIC).');

WRITV I: ( 1xY oi
U( XY.Y

F0F~ 1:=l ST=P 2 UNTIL N-i 00
FGR J:=l STEP 2 UNTIL 'A-i DO

BE:GIN ITILSZ:2
"WIIq 19 DIV N,"f.",i REM NO," set

J DIV M0,"',J REM MIU(ItJ));

END ;
GO TC W;
ENCD FIGUR':*
PRICCEDURE SWITCH;
BE G IN
INTEGER LK;
RFAL D3MvAMlULsTl
FOR L:=N STEP -i UNTIL 2 DO

8'-GlN
S*:=S-i;
FOR 1:=l UNTIL Mi-i DO
FOR. J:=i UNTIL Mi-1 00

FOP, 1:=l UNTIL Mi-1 00
FOP J:=l UNTIL Mi-1 DO

FOR. K:=1 UNTIL Mi-1 DO
BEGIN
IF K=MA-i THiýN GO TO P;
FOR I:=K+i UNTIL m-l1 DO

BEGIN,
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IF ABS(O(LK,K))<ABS(D(LsdK)) THEN
BEGIN
FOP J:sgl UNTIL 2*M-2 00

BEGIN

D(L,K,J) :=T;
ENC*NDOEND-

PIIF AM~0(L,K,K'))<S THEN WAMITR ELSE
B'ýGIN
OOM:=D(LtK0;0 (,,)=(,,)DMFOR J:=l UNTIL 2*M- 0DLKJ:4(,,)oM
FOR I'=1 UNTIL M-1 00

BEGIN

IF I=K THEN ELSE
BEGIN
FOP, J:=l UNTIL 2*M-2 DO

OEGIN

E-ND;,,:NDjFND;SNjo;,tNo;
FOR I*=l UYNTIL M-1. 06
FOR J:=l UNTIL M-1 P,'

0(LqIJ)k=D(L, i J.m-1);
FOR 1:*.= UNTIL n- o
FOR J:=1 UNTIL M-1 0O

E NO
IF T1=60 THEN DOP ELSS FIGURS;
5ND SWITCH;
STA PP.
END;
E ND;
W:GO TO X;
Z: !ENDo
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COMPUTER PROGRAM 8.

GALERKIb4'S METHOD APPLIED TO

v2U 2(x 2 +y 2 -x-y)E.(15

BEGIN
COMMENT SOLVES PARTIAL. DIFFERSNTIAt. 

EQUATIONS OF

IHE F014 LIJ)=F AY GAL-RKINtS METHOD 
ON ANY DOMAIN*

FORMAL PARAMP-'tVRS
N NUMBER OF EQUATIONS
M2 MAX, NuM64ý!' OF X OOS!TIONS
M3 MAX, NUMBUIR OF Y POSITIONS
142 ARRAY OF LOW5R Y PISITIONS
N3 ARRAY OF UPPER Y POSITIONS
F KNOWN FUNCT!.)'!

U UNKNOWN FUNCT13YI
II)I FST1IMATING FUNCTIONS

DIL) ?SUMATING FUNCTIONS)
MUrF. OF.FSTIMATING FUNCTIONS;

IRE&.L HtEtDOeCtO EVAMUL9900 .M;
REA H ;
REAL H2,H3;
INTEGER tA2,M3;
INTEGER Ns;,MR;
FsI=o~u~o~o! P :=O;DEVl.O;
READ(NsM29M3H2*Hs);
Hll---H2*H3;
BEGI N
REAL ARRAY X10::M21);
RE AL ARRAY Y(0::03);
REAL ARRAY 8:,N1
REAL ARRAY AC(1::N)k
REAL ARRAY F U (0O:: 2 0 M 3
REAL ARRAY QDI ( I : :N 0cim?2?,:M3)
INT'GEV. ARR~AY N2#N'3(0,.:M21;
FOR' !=0 UNTIL M2 D.3
FOR 1:=O UNTI L 143 D 0 Y I !~4H 3
FOR 1:=O U NT 1L M2 t10O A DOA (N2(i)
FOR I :=o UNT IL M2 r) r R FA Do0N (N3'( If
FOR 1:=o UNTIL M2 00
'FOR, J:= 0 UNT IL M3 0O

eF(G I NJ) : =0.O;

VOR L:tl. UNTIL 14 D f

BEGfN AMM-ýNT SOLVE- HERE;

BE GI N l~RITr,(4SINGULARlf);GC TO Q;
END WRIITERI
PROCi!DAJKR er-0
8:ýGIN COMM'INT G2_T kJ(iJ) A&N4 A(I);

WRITS(" COMPUTER OUTPUT 1Q.(GALEAKIN)")

WRT~WR ITE(R"E( VALUES OF CCI) ARE")tWRITE(" 41);

WRITC0("I fl
FOR I:=I UNTIL N 00

eEGIMAC )1:=B( 1 N+I1;
WINTS0 ~ CI,wo"noAUI)fWRITE(" 11);

=-NO*,
FOR J:=O UNITIL M3-1 DO
BEGIN
FOaR 1.=o UI\TIL ?42-1 DO
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BEGIN COG,-::O.O;
FOR L:=i UNTIL N DO DOG:=OOG+A(Ll*D(LIvJl;

WRI TE (" x y o
U(X.Y)'1 ;

FOR I.-= S FP 2 UNJTIL M2-i DO
FOR J2=1 STEP 2 UNTIL M3-1 DO

BEGIN INTFIELD)SIZE:=2;
WRITE(" ".,I DIV MWI,"i tkI-.M M2t

419J DIV M3,".'%,J REM M3,U I;JII' ~WRITE(" "
END*

GO TO 6.
END PERFORM;
PROCEDIJQE SWITCH;
BEGIN CONMM2NT SOLVES FOR AMI COEFF;
INT27GEI Ni ,Ml;

FOR 1:=l UNTIL Ml DO 8(I9tMi+lk:C(I3;
FOR K*:=i UNTIL Ml DO

BEGIN IF K~ml THEN GO TO P;
FOR 1:=K+l UNTIL MI 0O

BEGIN IF APtS(B(KtM)<ABS(8(IKfl THEN
BEGIN R:=R+l
FOR J:=l UNTIL Ni DO

BE-GIN T:=B(I,JJ;B(! ,J):=B(KJ);B(KtJ):=T;END;
END; END ;

P:.IF ABS(B(KK))<E TH=EN WRITPR FLSE
EG I N DEý: =DE V* B(K, K) ; DCN1. 13( K, K)

FOR J:=i UNTIL Ni 00 B(KtJ):=B(KJ)/DoM;
FOR I:=i UNTIL MI 00

BEGIN AMUL:=B(IK);
IF I=K TH7-!N 2LSE

BSGIN
FOR J:=l UNTIL Ni 00

FND9;END,'END;END;END;
PERFORM;
ENIC SWITCH,*
COMMENT GU;:SSZD FUNCTIONS DMI HERE;
FOP J:=O UNTIL M2 0O
FOR K*:=N2(J) UNTIL N3MJ CC

BEGI N
FPJ 1 :=2.k( X( J )**2+Y(K)**42.-X(JI)-YC K));

FOR JK:=(X(JNTIL M2 CO (YK:'lý2-(K*N

FO K XN(J)+i UNTIL N3(J-);D

D1(395(1J,,)~(4KL*H)

END;

IFGIN TO:=-0NSIC;

r-CR :=! UTIL M Q99



INQ
ENI-
0 ZN6.

10



BIBLIOGRAPHY

1. Angle, E. S., "discrete Invariant Imbeddinig and ElliP-
tic Boundary-Value Problems over Irregular Regions5,"
Journal of' Mathematical Analysis and Applications,
V.- 123, p 471-:481, 196b.

2. Angle, E. S., "A Building Block Technique for Elliptic
Boundary-Value Problems over Irregular Regions,"
Journal of Mathematical Analysis and Applications,
v.2,P 75-81, 1969.

3. Bowdier, Hilary, Martin, R. S., Reinsch, 0., Wilkinson,
J. H., "The QR and QL Algorithms for Symmetric Natri-
cies, "1 Numerisohe Mathematik, v. 11, p. 293-3o6, 1968.

4. Dettman, J. W., Mathematical Methods in Physics and
Engineering, 2d. ed., p. 162-168, McGraw-HIll, 1969.

5. Forray, M. J., Variational Calculus in Science and
Engineering, p. 157-204, McGraw-Hill, 196"U.

6. Kantorovich, L. V., Krylov, v. . Approximate Methods
of' Higher Analys p. 25-03 Interscience Publishers,
1956.

7. Martin, R. S., Reinsch, C., Wilkinson, J. H,, "House-
holder's Tridiagonalization of' a Symmetric Matrix,"
Numerisohe Mathematik, v. l11,p. 181-195, 1968.

8. Nemhauser, G. L., introduction to Dynamic Programmin~g,
p. 227-242, Wiley, 19Mb._

9. Stakgold, I., Bounda ry Value 'Problems of Mathematical
Physics, v. 1, p. 22d-245, Mvaclyillian, 1969.

10. University of Southern California USCEE-237, Dynamic
Programming, and Linear Partial Differential Equations,

by E. S. Angel, January 1965.

101


